Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Gynecol Cancer ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940339

RESUMO

OBJECTIVES: Abnormalities in mismatch repair have been described in ovarian cancer, but few studies have examined the causes of mismatch repair deficiency (MMRd). To address this, we completed targeted mutational and methylation sequencing on MMRd ovarian cancer cases. The objective of this study was to explore the molecular mechanism of MMRd using our targeted next generation sequencing panel. METHODS: Newly diagnosed non-serous/mucinous ovarian cancers (n=215) were prospectively recruited from three cancer centers in Ontario, Canada, between 2015 and 2018. Tumors were reflexively assessed for mismatch repair protein by immunohistochemistry. Matched tumor-normal MMRd cases were analyzed on a custom next generation sequencing panel to identify germline and somatic mutations, copy number variants, rearrangements, and promoter methylation in mismatch repair and associated genes. RESULTS: Of 215 cases, 28 (13%) were MMRd. The MMRd cohort had a median age of 52.3 years (range 33.6-62.2), with mostly stage I (50%) and grade 1 or 2 endometrioid histotype (57%). Of the 28 cases, 22 were available for molecular analysis, and Lynch syndrome was detected in 50% of MMRd cases (11/22; seven ovarian cancer and four synchronous ovarian and endometrial cancer: seven MSH6, two MLH1, one PMS2, and one MSH2). An explanation for the observed mismatch repair phenotype was available for 22/22 deficient cases, including 12 MLH1/PMS2 deficient (nine somatic methylation, one bi-allelic somatic deletion, and two pathogenic germline variant), one PMS2 deficient (one pathogenic germline variant), seven MSH6 deficient (seven pathogenic germline variant), and two MSH2/MSH6 deficient (one pathogenic germline variant and one bi-allelic somatic mutation). Concordance between clinical germline testing and panel sequencing results was 100%. CONCLUSIONS: Use of our custom next generation sequencing panel allowed for the streamlined assessment of hereditary and somatic causes of MMRd in ovarian cancers.

2.
Cancer Discov ; 14(1): 104-119, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874259

RESUMO

People with Li-Fraumeni syndrome (LFS) harbor a germline pathogenic variant in the TP53 tumor suppressor gene, face a near 100% lifetime risk of cancer, and routinely undergo intensive surveillance protocols. Liquid biopsy has become an attractive tool for a range of clinical applications, including early cancer detection. Here, we provide a proof-of-principle for a multimodal liquid biopsy assay that integrates a targeted gene panel, shallow whole-genome, and cell-free methylated DNA immunoprecipitation sequencing for the early detection of cancer in a longitudinal cohort of 89 LFS patients. Multimodal analysis increased our detection rate in patients with an active cancer diagnosis over uni-modal analysis and was able to detect cancer-associated signal(s) in carriers prior to diagnosis with conventional screening (positive predictive value = 67.6%, negative predictive value = 96.5%). Although adoption of liquid biopsy into current surveillance will require further clinical validation, this study provides a framework for individuals with LFS. SIGNIFICANCE: By utilizing an integrated cell-free DNA approach, liquid biopsy shows earlier detection of cancer in patients with LFS compared with current clinical surveillance methods such as imaging. Liquid biopsy provides improved accessibility and sensitivity, complementing current clinical surveillance methods to provide better care for these patients. See related commentary by Latham et al., p. 23. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Ácidos Nucleicos Livres , Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patologia , Proteína Supressora de Tumor p53/genética , Detecção Precoce de Câncer , Ácidos Nucleicos Livres/genética , Genes p53 , Mutação em Linhagem Germinativa , Predisposição Genética para Doença
3.
Nat Cancer ; 4(4): 502-515, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37038005

RESUMO

We report herein an exploratory biomarker analysis of refractory tumors collected from pediatric patients before atezolizumab therapy (iMATRIX-atezolizumab, NCT02541604 ). Elevated levels of CD8+ T cells and PD-L1 were associated with progression-free survival and a diverse baseline infiltrating T-cell receptor repertoire was prognostic. Differential gene expression analysis revealed elevated expression of CALCA (preprocalcitonin) and CCDC183 (highly expressed in testes) in patients who experienced clinical activity, suggesting that tumor neoantigens from these genes may contribute to immune response. In patients who experienced partial response or stable disease, elevated Igα2 expression correlated with T- and B-cell infiltration, suggesting that tertiary lymphoid structures existed in these patients' tumors. Consensus gene co-expression network analysis identified core cellular pathways that may play a role in antitumor immunity. Our study uncovers features associated with response to immune-checkpoint inhibition in pediatric patients with cancer and provides biological and translational insights to guide prospective biomarker profiling in future clinical trials.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Criança , Neoplasias/tratamento farmacológico , Neoplasias/genética , Anticorpos Monoclonais Humanizados/efeitos adversos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA