Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Carcinogenesis ; 44(12): 824-836, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-37713476

RESUMO

OBJECTIVE(S): The prognostic value of systemic cytokine profiles and inflammatory markers in colorectal cancer were explored by several studies. We want to know more about inflammatory biomarkers in colorectal adenoma and early cancer. METHOD: The level of 38 inflammatory markers in the plasma of 112 adenoma patients, 72 Tis-T1 staging of colorectal carcinoma patients, 34 T2-T4 staging of colorectal carcinoma patients and 53 normal subjects were detected and compared. RESULT(S): Eight inflammatory biomarkers (Eotaxin, GCSF, IL-4, IL-5, IL-17E, MCP-1, TNF-α and VEGF-A) have higher plasma concentrations in colorectal adenoma and cancer patients compared with normal participants over 50 years old. CONCLUSION(S): Inflammatory markers may have the prognostic value for colorectal adenoma and early-stage carcinoma.


Assuntos
Adenoma , Neoplasias Colorretais , Humanos , Pessoa de Meia-Idade , Neoplasias Colorretais/patologia , Biomarcadores , Fator de Necrose Tumoral alfa , Prognóstico , Biomarcadores Tumorais
2.
Plant Dis ; 107(7): 2070-2080, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36691277

RESUMO

The distribution range of root-knot nematode Meloidogyne graminicola is rapidly expanding, posing a severe threat to rice production. In this study, the sequences of cytochrome oxidase subunit I (COI) genes of rice M. graminicola populations from all reported provinces in China were amplified and sequenced by PCR. The distribution pattern and phylogenetic tree showed that all 54 M. graminicola populations in China have distinct geographical distribution characteristics; specifically, cluster 1 (southern China), cluster 2 (central south and southwest China), and cluster 3 (central and eastern China). The high haplotype diversity (Hd = 0.646) and low nucleotide diversity (π = 0.00682), combined with the negative value of Tajima's D (-1.252) and Fu's Fs (-3.06764), suggested that all nematode populations were expanding. The existence of high genetic differentiation (Fst = 0.5933) and low gene flow (Nm = 0.3333) indicated that there was a block of gene exchange between most populations. Mutation accumulation with population expansion might be directly responsible for the high genetic differentiation; therefore, the tested nematode population showed high within-group genetic variation (96.30%). The haplotype Hap8 was located at the bottom of the network topology, with the widest distribution and the highest frequency (59.26%), indicating that it was the ancestral haplotype. The populations in cluster 3 were newly invasive according to the lowest frequency of occurrence of Hap8, the highest number of endemic haplotypes, and the highest total haplotype frequency (60%). In contrast, cluster 1 having the highest genetic diversity (Hd = 0.772, π = 0.01127) indicated that it was the most primitive. Interestingly, the highest gene flow (Nm > 1), lowest genetic differentiation (Fst ≤ 0.33), and closest genetic distance (0.000) only occurred between the Guangdong/Hainan population and others, which suggested that there might be channels for gene exchange between them and that long-distance dispersal occurred. This suggestion is further confirmed by the weak correlation between genetic distance and geographical distance. Based on these data, a hypothesis can be drawn that M. graminicola populations in China were spreading from south to north, specifically from Guangdong and Hainan Provinces to other regions. Natural selection (including anthropogenic) and genetic drift were the main drivers of their evolution. Coincidentally, this hypothesis was consistent with the gradual warming trend and the chronological order of reporting these populations. The main factors influencing current M. graminicola population expansion and distribution patterns might be geography, climate, long-distance seedling transport, interregional operations of agricultural machinery, and rotation mode. It reminds human beings of the necessity to be vigilant about preventing nematode disease according to local conditions all year round.


Assuntos
Oryza , Tylenchoidea , Animais , Humanos , Filogenia , Tylenchoidea/genética , Geografia , Deriva Genética , China
3.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764510

RESUMO

Plants are constantly exposed to various phytopathogens such as fungi, Oomycetes, nematodes, bacteria, and viruses. These pathogens can significantly reduce the productivity of important crops worldwide, with annual crop yield losses ranging from 20% to 40% caused by various pathogenic diseases. While the use of chemical pesticides has been effective at controlling multiple diseases in major crops, excessive use of synthetic chemicals has detrimental effects on the environment and human health, which discourages pesticide application in the agriculture sector. As a result, researchers worldwide have shifted their focus towards alternative eco-friendly strategies to prevent plant diseases. Biocontrol of phytopathogens is a less toxic and safer method that reduces the severity of various crop diseases. A variety of biological control agents (BCAs) are available for use, but further research is needed to identify potential microbes and their natural products with a broad-spectrum antagonistic activity to control crop diseases. This review aims to highlight the importance of biocontrol strategies for managing crop diseases. Furthermore, the role of beneficial microbes in controlling plant diseases and the current status of their biocontrol mechanisms will be summarized. The review will also cover the challenges and the need for the future development of biocontrol methods to ensure efficient crop disease management for sustainable agriculture.


Assuntos
Nematoides , Praguicidas , Animais , Humanos , Produtos Agrícolas , Bactérias , Agricultura , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
4.
Phys Rev Lett ; 128(16): 161105, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522511

RESUMO

We report a new black hole (BH) scalarization mechanism and disclose novel dynamical critical phenomena in the process of the nonlinear accretion of the scalar field into BHs. The accretion process can transform a seed BH into a final scalarized or bald BH, depending on the initial parameter of the scalar field p. There is a critical parameter p_{*} and near it all intermediate solutions are attracted to a critical solution (CS) and stay there for a time scaling as T∝-γln|p-p_{*}|. At late times, the solutions evolve into scalarized black holes (BHs) if p>p_{*}, or bald BHs if p

5.
BMC Microbiol ; 20(1): 48, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126973

RESUMO

BACKGROUND: The root-knot nematode Meloidogyne graminicola has become a serious threat to rice production as a result of the cultivation changes from transplanting to direct seeding. The nematicidal activity of Aspergillus welwitschiae have been investigated in vitro, and the disease control efficacy of the active compound has been evaluated under greenhouse and field conditions. RESULTS: The active compound αß-dehydrocurvularin (αß-DC), isolated by nematicidal assay-directed fractionation, showed significant nematicidal activity against M. graminicola, with a median lethal concentration (LC50) value of 122.2 µg mL- 1. αß-DC effectively decreased the attraction of rice roots to nematodes and the infection of nematodes and also suppressed the development of nematodes under greenhouse conditions. Moreover, αß-DC efficiently reduced the root gall index under field conditions. CONCLUSIONS: To our knowledge, this is the first report to describe the nematicidal activity of αß-DC against M. graminicola. The results obtained under greenhouse and field conditions provide a basis for developing commercial formulations from αß-DC to control M. graminicola in the future.


Assuntos
Antiparasitários/farmacologia , Aspergillus/química , Oryza/crescimento & desenvolvimento , Tylenchoidea/efeitos dos fármacos , Zearalenona/análogos & derivados , Animais , Antiparasitários/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia , Feminino , Efeito Estufa , Estrutura Molecular , Oryza/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Zearalenona/química , Zearalenona/isolamento & purificação , Zearalenona/farmacologia
6.
Pharmacol Res ; 159: 104960, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32473310

RESUMO

Coronavirus Disease 2019 (COVID-19) caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with a crude case fatality rate of about 0.5-10 % depending on locality. A few clinically approved drugs, such as remdesivir, chloroquine, hydroxychloroquine, nafamostat, camostat, and ivermectin, exhibited anti-SARS-CoV-2 activity in vitro and/or in a small number of patients. However, their clinical use may be limited by anti-SARS-CoV-2 50 % maximal effective concentrations (EC50) that exceeded their achievable peak serum concentrations (Cmax), side effects, and/or availability. To find more immediately available COVID-19 antivirals, we established a two-tier drug screening system that combines SARS-CoV-2 enzyme-linked immunosorbent assay and cell viability assay, and applied it to screen a library consisting 1528 FDA-approved drugs. Cetilistat (anti-pancreatic lipase), diiodohydroxyquinoline (anti-parasitic), abiraterone acetate (synthetic androstane steroid), and bexarotene (antineoplastic retinoid) exhibited potent in vitro anti-SARS-CoV-2 activity (EC50 1.13-2.01 µM). Bexarotene demonstrated the highest Cmax:EC50 ratio (1.69) which was higher than those of chloroquine, hydroxychloroquine, and ivermectin. These results demonstrated the efficacy of the two-tier screening system and identified potential COVID-19 treatments which can achieve effective levels if given by inhalation or systemically depending on their pharmacokinetics.


Assuntos
Antivirais/farmacologia , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Pneumonia Viral/tratamento farmacológico , Androstenos/farmacologia , Animais , Benzoxazinas/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/fisiologia , Bexaroteno/farmacologia , COVID-19 , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Efeito Citopatogênico Viral/efeitos dos fármacos , Bases de Dados de Produtos Farmacêuticos , Aprovação de Drogas , Reposicionamento de Medicamentos , Ensaio de Imunoadsorção Enzimática , Humanos , Iodoquinol/farmacologia , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Estados Unidos , United States Food and Drug Administration , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
7.
BMC Plant Biol ; 18(1): 50, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580214

RESUMO

BACKGROUND: Silicon (Si) can confer plant resistance to both abiotic and biotic stress. In the present study, the priming effect of Si on rice (Oryza sativa cv Nipponbare) against the root-knot nematode Meloidogyne graminicola and its histochemical and molecular impact on plant defense mechanisms were evaluated. RESULTS: Si amendment significantly reduced nematodes in rice roots and delayed their development, while no obvious negative effect on giant cells was observed. Increased resistance in rice was correlated with higher transcript levels of defense-related genes (OsERF1, OsEIN2 and OsACS1) in the ethylene (ET) pathway. Si amendment significantly reduced nematode numbers in rice plants with enhanced ET signaling but had no effect in plants deficient in ET signaling, indicating that the priming effects of Si were dependent on the ET pathway. A higher deposition of callose and accumulation of phenolic compounds were observed in rice roots after nematode attack in Si-amended plants than in the controls. CONCLUSION: These findings indicate that the priming effect may partially depend on the production of phenolic compounds and hydrogen peroxide. Further research is required to model the ethylene signal transduction pathway that occurs in the Si-plant-nematode interaction system and gain a better understanding of Si-induced defense in rice.


Assuntos
Oryza/efeitos dos fármacos , Oryza/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Silício/farmacologia , Tylenchoidea/patogenicidade , Animais , Lignina/metabolismo , Doenças das Plantas/parasitologia , Tylenchoidea/efeitos dos fármacos
8.
Phytopathology ; 108(2): 264-274, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28945520

RESUMO

Few molecular details of effectors of Heterodera avenae parasitism are known. We performed a high-throughput sequencing analysis of the H. avenae transcriptome at five developmental stages. A total of 82,549 unigenes were ultimately obtained, and 747 transcripts showed best hits to genes putatively encoding carbohydrate-active enzymes in plant-parasitic nematodes that play an important role in the invasion process. A total of 1,480 unigenes were homologous to known phytonematode effectors, and 63 putative novel effectors were identified in the H. avenae transcriptomes. Twenty-three unigenes were analyzed by qRT-PCR and confirmed to be highly expressed during at least one developmental stage. For in situ hybridization, 17 of the 22 tested putative effectors were specifically expressed and located in the subventral gland cells, and five putative novel effectors were specifically expressed in the dorsal gland. Furthermore, 115 transcripts were found to have putative lethal RNA interference (RNAi) phenotypes. Three target genes with lethal RNAi phenotypes and two of the four tested putative effectors were associated with a decrease in the number of cysts through in vitro RNAi technology. These transcriptomic data lay a foundation for further studies of interactions of H. avenae with cereal and H. avenae parasitic control.


Assuntos
Grão Comestível/parasitologia , Proteínas de Helminto/genética , Doenças das Plantas/parasitologia , Transcriptoma , Tylenchoidea/genética , Animais , Feminino , Hibridização In Situ , Óvulo , Fenótipo , Interferência de RNA , Análise de Sequência de RNA , Tylenchoidea/citologia , Tylenchoidea/crescimento & desenvolvimento
9.
Biodegradation ; 29(3): 245-258, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29546497

RESUMO

Sulfamethoxazole (SMX) has frequently been detected in aquatic environments. In natural environment, not only individual microorganism but also microbial consortia are involved in some biotransformation of pollutants. The competition for space under consortia causing cell-cell contact inhibition changes the cellular behaviors. Herein, the membrane bioreactor system (MBRS) was applied to improve SMX elimination thorough exchanging the cell-free broths (CFB). The removal efficiency of SMX was increased by more than 24% whether under the pure culture of A. faecalis or under the co-culture of A. faecalis and P. denitrificans with MBRS. Meanwhile, MBRS significantly inhibited the formation of HA-SMX, and Ac-SMX from parent compound. Additionally, the cellular growth under MBRS was obviously enhanced, indicating that the increases in the cellular growth under MBRS are possibly related to the decreases in the levels of HA-SMX and Ac-SMX compared to that without MBRS. The intracellular NADH/NAD+ ratios of A. faecalis under MBRS were increased whether thorough itself-recycle of CFB or exchanging CFB between the pure cultures of A. faecalis and P. denitrificans, suggesting that the enhancement in the bioremoval efficiencies of SMX under MBRS by A. faecalis is likely related to the increases in the NADH/NAD+ ratio. Taken together, the regulation of cell-to-cell communication is preferable strategy to improve the bioremoval efficiency of SMX.


Assuntos
Reatores Biológicos/microbiologia , Hidroxilaminas/metabolismo , Membranas Artificiais , Sulfametoxazol/análogos & derivados , Acetilação , Alcaligenes/crescimento & desenvolvimento , Alcaligenes/metabolismo , Biodegradação Ambiental , Biotransformação , NAD/metabolismo , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo , Sulfametoxazol/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 43(21): 4305-4310, 2018 Nov.
Artigo em Zh | MEDLINE | ID: mdl-30583633

RESUMO

The aim of this paper was to study the curative effect of Huotan Jiedu Tongluo (HTJDTL) decoction on a rabbit model with early atherosclerosis (AS),and furtherly to explore whether it could inhibit the BH4/eNOS uncoupling ROS or not. Twenty-four Japanese white rabbits were randomly divided into sham operation group, model group, HTJDTL decoction group and atorvastatin group. Rabbit models with early atherosclerosis were established by high fat diet, nitrogen drying and carotid artery balloon injury. The rabbits were sacrificed at 7th days after balloon injury and several parameters were measured. The pathological morphology of the common carotid artery was observed by HE staining. The blood lipids were detected by peroxidase method. The ratio of vascular eNOS dimer and monomer was measured by Western blot. The ELISA and biochemical technology were respectively used for testing BH4 and ROS levels in serum. The results showed that compared with the sham operation group, the model group had mild stenosis of the common carotid artery lumen, uneven intimal hyperplasia, lipid deposition in the intima and media, and obvious hyperplasia of the adventitia with inflammatory cell infiltration. The HTJDTL decoction could significantly inhibit the intimal hyperplasia compared with the model group, meanwhile, reduce the lipid deposition of the media and the infiltration of the adventitial cells. Compared with the sham operation group, the blood lipids and ROS of the model animals significantly increased, but BH4 and the ratio of eNOS dimer/monomer decreased. Compared with the model group, HTJDTL decoction significantly reduced the TC, ox-LDL and ROS levels, and also up-regulated eNOS dimer/monomer ratio, but it increased BH4 trend without statistical difference. According to the results, it was found that HTJDTL decoction couldsignificantly prevent and improve the vascular remodeling of rabbits model with early atherosclerosis. The mechanism of decoction may largely be related to the inhibition of BH4/eNOS uncoupling and the reduction of oxidative stress.


Assuntos
Aterosclerose/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Artérias Carótidas/patologia , Estresse Oxidativo , Coelhos , Distribuição Aleatória
11.
J Autoimmun ; 77: 1-10, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28341037

RESUMO

Multiple sclerosis starts with increased migration of auto-reactive lymphocytes across the blood-brain barrier, resulting in persistent neurodegeneration. Clinical and epidemiological studies indicated upper respiratory viral infections are associated with clinical exacerbation of multiple sclerosis. However, so far there is no any direct evidence to support it. Using the experimental autoimmune encephalomyelitis mice as the model for multiple sclerosis, we demonstrated that mice experienced with influenza virus infection were unable to recover from experimental autoimmune encephalomyelitis with a long-term exacerbation. The exacerbated disease was due to more type I T cells, such as CD45highCD4+CD44high, CD45highCD4+CCR5+, CD45high IFNγ+CD4+, MOG35-55-specific IFNγ+CD4+ and influenza virus-specific IFNγ+CD4+ T cells, infiltrating central nervous system in mice with prior influenza virus infection. Influenza virus infection created a notable inflammatory environment in lung and mediastinal lymph node after influenza virus inoculation, suggesting the lung may constitute an inflammatory niche in which auto-aggressive T cells gain the capacity to enter CNS. Indeed, the early stage of EAE disease was accompanied by increased CCR5+CD4+, CXCR3+CD4+ T cell and MOG35-55 specific CD4+ T cells localized in the lung in influenza virus-infected mice. CCL5/CCR5 might mediate the infiltration of type I T cells into CNS during the disease development after influenza infection. Administration of CCR5 antagonist could significantly attenuate the exacerbated disease. Our study provided the evidence that the prior influenza virus infection may promote the type I T cells infiltration into the CNS, and subsequently cause a long-term exacerbation of experimental autoimmune encephalomyelitis.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/imunologia , Infecções por Orthomyxoviridae/complicações , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Progressão da Doença , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Camundongos , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Receptores CCR5/agonistas , Medula Espinal/imunologia , Medula Espinal/patologia , Medula Espinal/virologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia
12.
Org Biomol Chem ; 15(34): 7112-7116, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28825437

RESUMO

An iodine-catalyzed multiple C-H bond functionalization of isoquinolines with methylarenes via a successive benzylic sp3 C-H iodination/N-benzylation/amidation/double sp2 C-H oxidation sequence is developed. This reaction utilizes un-functionalized isoquinolines and readily available methylarenes as starting materials, proceeds under metal-free conditions, and avoids a multi-step experimental operation, to make it an efficient and practical method for the synthesis of N-benzyl isoquinoline-1,3,4-triones.

13.
Plant Dis ; 101(3): 428-433, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30677342

RESUMO

Cereal cyst nematodes (Heterodera avenae and H. filipjevi) and root lesion nematodes (Pratylenchus spp.) have been found to infect cereals in 16 provinces of China. To develop a nematicide that effectively controls nematodes, two novel chemical products, methylene bis thiocyanate (MBT) and MBT + thiamethoxam (MTT); four common pesticides, fipronil + chlorpyrifos (FIC), emamectin benzoate, imidacloprid, and Bacillus thuringiensis; and one fungicide, iprodione, were tested as seed coatings for the control of cereal cysts and root lesion nematodes from 2013 to 2015. Wheat seeds were treated with these seven seed coatings before sowing, and changes in the numbers of Heterodera spp. and Pratylenchus spp. were recorded during three different growth stages. Wheat yields were also compared after harvest. All treatments reduced the numbers of Pratylenchus in wheat and of cysts and eggs of Heterodera in the soil compared with the untreated control. Among the treatments, application of MTT or FIC was more effective than that of the other treatments for nematode control, and the other treatments had similar effects. The results of this study have demonstrated that MTT and FIC applied as seed treatments effectively reduce the number of cysts, inhibit the reproduction of Heterodera and Pratylenchus, and enhance wheat yields. MTT and FIC are thus suitable for controlling nematodes on wheat under natural field conditions.

14.
BMC Genomics ; 16: 801, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26475271

RESUMO

BACKGROUND: Cereal cyst nematode Heterodera avenae, an important soil-borne pathogen in wheat, causes numerous annual yield losses worldwide, and use of resistant cultivars is the best strategy for control. However, target genes are not readily available for breeding resistant cultivars. Therefore, comparative transcriptomic analyses were performed to identify more applicable resistance genes for cultivar breeding. METHODS: The developing nematodes within roots were stained with acid fuchsin solution. Transcriptome assemblies and redundancy filteration were obtained by Trinity, TGI Clustering Tool and BLASTN, respectively. Gene Ontology annotation was yielded by Blast2GO program, and metabolic pathways of transcripts were analyzed by Path_finder. The ROS levels were determined by luminol-chemiluminescence assay. The transcriptional gene expression profiles were obtained by quantitative RT-PCR. RESULTS: The RNA-sequencing was performed using an incompatible wheat cultivar VP1620 and a compatible control cultivar WEN19 infected with H. avenae at 24 h, 3 d and 8 d. Infection assays showed that VP1620 failed to block penetration of H. avenae but disturbed the transition of developmental stages, leading to a significant reduction in cyst formation. Two types of expression profiles were established to predict candidate resistance genes after developing a novel strategy to generate clean RNA-seq data by removing the transcripts of H. avenae within the raw data before assembly. Using the uncoordinated expression profiles with transcript abundance as a standard, 424 candidate resistance genes were identified, including 302 overlapping genes and 122 VP1620-specific genes. Genes with similar expression patterns were further classified according to the scales of changed transcript abundances, and 182 genes were rescued as supplementary candidate resistance genes. Functional characterizations revealed that diverse defense-related pathways were responsible for wheat resistance against H. avenae. Moreover, phospholipase was involved in many defense-related pathways and localized in the connection position. Furthermore, strong bursts of reactive oxygen species (ROS) within VP1620 roots infected with H. avenae were induced at 24 h and 3 d, and eight ROS-producing genes were significantly upregulated, including three class III peroxidase and five lipoxygenase genes. CONCLUSIONS: Large-scale identification of wheat resistance genes were processed by comparative transcriptomic analysis. Functional characterization showed that phospholipases associated with ROS production played vital roles in early defense responses to H. avenae via involvement in diverse defense-related pathways as a hub switch. This study is the first to investigate the early defense responses of wheat against H. avenae, not only provides applicable candidate resistance genes for breeding novel wheat cultivars, but also enables a better understanding of the defense mechanisms of wheat against H. avenae.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Transcriptoma/genética , Triticum/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Doenças das Plantas/parasitologia , Análise de Sequência de RNA , Triticum/parasitologia , Tylenchoidea/patogenicidade
15.
BMC Plant Biol ; 15: 267, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26537003

RESUMO

BACKGROUND: Biochar is a solid coproduct of biomass pyrolysis, and soil amended with biochar has been shown to enhance the productivity of various crops and induce systemic plant resistance to fungal pathogens. The aim of this study was to explore the ability of wood biochar to induce resistance to the root-knot nematode (RKN) Meloidogyne graminicola in rice (Oryza sativa cv. Nipponbare) and examine its histochemical and molecular impact on plant defense mechanisms. RESULTS: A 1.2 % concentration of biochar added to the potting medium of rice was found to be the most effective at reducing nematode development in rice roots, whereas direct toxic effects of biochar exudates on nematode viability, infectivity or development were not observed. The increased plant resistance was associated with biochar-primed H2O2 accumulation as well as with the transcriptional enhancement of genes involved in the ethylene (ET) signaling pathway. The increased susceptibility of the Ein2b-RNAi line, which is deficient in ET signaling, further confirmed that biochar-induced priming acts at least partly through ET signaling. CONCLUSION: These results suggest that biochar amendments protect rice plants challenged by nematodes. This priming effect partially depends on the ET signaling pathway and enhanced H2O2 accumulation.


Assuntos
Carvão Vegetal/farmacologia , Oryza/parasitologia , Doenças das Plantas/prevenção & controle , Solo/parasitologia , Tylenchoidea/efeitos dos fármacos , Animais , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia
16.
Small ; 11(34): 4298-302, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26097134

RESUMO

Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package.


Assuntos
Materiais Biocompatíveis/química , Grafite/química , Mananas/química , Teste de Materiais/métodos , Nanocompostos/química , Óxidos/química , Polímeros/química , Animais , Forma Celular , Camundongos , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier
17.
World J Gastrointest Oncol ; 16(7): 3169-3192, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072166

RESUMO

BACKGROUND: Angiogenesis plays an important role in colon cancer (CC) progression. AIM: To investigate the tumor microenvironment (TME) and intratumor microbes of angiogenesis subtypes (AGSs) and explore potential targets for antiangiogenic therapy in CC. METHODS: The data were obtained from The Cancer Genome Atlas database and Gene Expression Omnibus database. K-means clustering was used to construct the AGSs. The prognostic model was constructed based on the differential genes between two subtypes. Single-cell analysis was used to analyze the expression level of SLC2A3 on different cells in CC, which was validated by immunofluorescence. Its biological functions were further explored in HUVECs. RESULTS: CC samples were grouped into two AGSs (AGS-A and AGS-B) groups and patients in the AGS-B group had poor prognosis. Further analysis revealed that the AGS-B group had high infiltration of TME immune cells, but also exhibited high immune escape. The intratumor microbes were also different between the two subtypes. A convenient 6-gene angiogenesis-related signature (ARS), was established to identify AGSs and predict the prognosis in CC patients. SLC2A3 was selected as the representative gene of ARS, which was higher expressed in endothelial cells and promoted the migration of HUVECs. CONCLUSION: Our study identified two AGSs with distinct prognoses, TME, and intratumor microbial compositions, which could provide potential explanations for the impact on the prognosis of CC. The reliable ARS model was further constructed, which could guide the personalized treatment. The SLC2A3 might be a potential target for antiangiogenic therapy.

18.
J Gen Virol ; 94(Pt 10): 2191-2201, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23851440

RESUMO

Dengue virus (DENV) is a mosquito-borne virus that causes severe health problems. An effective tetravalent dengue vaccine candidate that can provide life-long protection simultaneously against all four DENV serotypes is highly anticipated. A better understanding of the antibody response to DENV envelope protein domain III (EDIII) may offer insights into vaccine development. Here, we identified 25 DENV cross-reactive mAbs from immunization with Pichia pastoris-expressed EDIII of a single or all four serotype(s) using a prime-boost protocol, and through pepscan analysis found that 60 % of them (15/25) specifically recognized the same highly conserved linear epitope aa 309-320 of EDIII. All 15 complex-reactive mAbs exhibited significant cross-reactivity with recombinant EDIII from all DENV serotypes and also with C6/36 cells infected with DENV-1, -2, -3 and -4. However, neutralization assays indicated that the majority of these 15 mAbs were either moderately or weakly neutralizing. Through further epitope mapping by yeast surface display, two residues in the AB loop, Q316 and H317, were discovered to be critical. Three-dimensional modelling analysis suggests that this epitope is surface exposed on EDIII but less accessible on the surface of the E protein dimer and trimer, especially on the surface of the mature virion. It is concluded that EDIII as an immunogen may elicit cross-reactive mAbs toward an epitope that is not exposed on the virion surface, therefore contributing inefficiently to the mAbs neutralization potency. Therefore, the prime-boost strategy of EDIII from a single serotype or four serotypes mainly elicited a poorly neutralizing, cross-reactive antibody response to the conserved AB loop of EDIII.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Monoclonais/imunologia , Reações Cruzadas , Vacinas contra Dengue/química , Vírus da Dengue/metabolismo , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Modelos Moleculares , Pichia/metabolismo , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
19.
J Org Chem ; 78(7): 3405-9, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23461780

RESUMO

By using a benzimidazole core and N-substitutions to tune the electronic properties of the corresponding N-heterocyclic carbenes, a one-pot protocol for efficient synthesis of α-aminoboronic esters without the need of a glovebox was developed in this work. The starting materials for the transformation can also be extended from aldehydes to ketones. An alternative protocol with short reaction time using preformed carbene-copper chloride is also described.


Assuntos
Benzimidazóis/química , Ácidos Borônicos/síntese química , Cobre/química , Ésteres/síntese química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Ácidos Borônicos/química , Catálise , Ésteres/química , Metano/química , Estrutura Molecular
20.
Org Biomol Chem ; 11(37): 6350-6, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23945776

RESUMO

An easy to operate method of catalytic hydroboration of unsaturated compounds has been developed with wide substrate scope. Reactions of various aldimines, ketimines, α,ß-unsaturated carbonyl compounds, and alkynes were successfully executed with bis(pinacolato)diboron and N-heterocyclic carbenes in methanol without requiring a transition metal or inert atmosphere.


Assuntos
Boro/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Metanol/química , Atmosfera , Catálise , Metano/química , Estereoisomerismo , Elementos de Transição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA