RESUMO
OBJECTIVES: CUX1 mutations have been reported in myeloid neoplasms. We aimed to characterize the mutational landscape, clonal architecture, and clinical characteristics of myeloid disorders with CUX1 variants. METHODS: We reviewed data from a targeted 62-gene panel with CUX1 variants. Variants were classified as of strong or potential clinical significance (tier I/tier II) or of unknown significance (VUS). RESULTS: CUX1 variants were identified in 169 cases. The 49 tier I/tier II variants were found in older patients (mean age, 71 vs 60 years old) and predominantly inactivating alterations, while the 120 VUS cases were missense mutations. Monosomy 7/deletion 7q was more common in tier I/tier II cases. Co-mutations were detected in 96% of tier I/tier II cases (average, 3.7/case) but in only 61% of VUS cases (average, 1.5/case). Tier I/tier II CUX1 variants tend to be subclonal to co-mutations (ASXL1, SF3B1, SRSF2, TET2). Among myeloid disorders, tier I/tier II cases were more frequently diagnosed with myelodysplastic syndromes and had a higher number of bone marrow dysplastic lineages. CONCLUSIONS: CUX1 mutations are seen with adverse prognostic features and could be a late clonal evolutional event of myeloid disorders. The differences between CUX1 tier I/tier II and VUS underscore the importance of accurate variant classification in reporting of multigene panels.
Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Idoso , Proteínas de Homeodomínio , Humanos , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/genética , Prognóstico , Proteínas Repressoras/genética , Fatores de Transcrição/genéticaRESUMO
The Molecular Pathology Section, Cleveland Clinic (Cleveland, OH), has undergone enhancement of its testing portfolio and processes. An Excel 2013- and paper-based data-management system was replaced with a commercially available laboratory information-management system (LIMS) software application, a separate bioinformatics platform, customized test-interpretation applications, a dedicated sample-accessioning service, and a results-releasing software application. The customized LIMS solution manages complex workflows, large-scale data packets, and process automation. A customized approach was required because, in a survey of commercially available off-the-shelf software products, none met the diverse and complex needs of this molecular diagnostics service. The project utilized the expertise of clinical laboratorians, pathologists, genetics counselors, bioinformaticians, and systems analysts in partnering with software-engineering consultants to design and implement a solution. Concurrently, Agile software-building best practices were formulated, which may be emulated for scalable and cost-effective laboratory-authored software.
Assuntos
Patologia Molecular , Software , Biologia Computacional , Humanos , Laboratórios , Fluxo de TrabalhoRESUMO
Cystic fibrosis (CF) is one of the most common recessive conditions among whites, with an estimated carrier frequency of 1 in 25 in the United States. Population-based CF carrier screening was implemented in the United States in 2001. The number of mutations screened by each laboratory may vary; however, the 23 most common CF mutations recommended for screening by the American College of Medical Genetics and American College of Obstetricians and Gynecologists are included in all platforms. The c.1364C>A (p.A455E) mutation located in exon 10 of the CFTR gene is one of the 23 mutations. Because CFTR exon 10 and its flanking intronic regions are duplicated and transposed onto several other chromosomes of the human genome during evolution and function as unprocessed pseudogenes, variations in the CFTR pseudogenes may confound CF screening results for mutations located in exon 10 of the CFTR gene. We report an incorrectly identified carrier status for the c.1364C>A (p.A455E) mutation in a healthy individual using the Hologic InPlex CF assay. Further analysis revealed that the mutation resides in one of the CFTR pseudogenes. Because most commercial kits and laboratory-developed tests for CF carrier screening involve a short amplicon encompassing this mutation, this finding suggests that individuals with the c.1364C>A (p.A455E) mutation may require further investigation to avoid a false assignment of CF carrier status.