Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 532, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791233

RESUMO

BACKGROUND: Although the most common path of infection for fire blight, a severe bacterial disease on apple, is via host plant flowers, quantitative trait loci (QTLs) for fire blight resistance to date have exclusively been mapped following shoot inoculation. It is not known whether the same mechanism underlies flower and shoot resistance. RESULTS: We report the detection of a fire blight resistance QTL following independent artificial inoculation of flowers and shoots on two F1 segregating populations derived from crossing resistant Malus ×robusta 5 (Mr5) with susceptible 'Idared' and 'Royal Gala' in experimental orchards in Germany and New Zealand, respectively. QTL mapping of phenotypic datasets from artificial flower inoculation of the 'Idared' × Mr5 population with Erwinia amylovora over several years, and of the 'Royal Gala' × Mr5 population in a single year, revealed a single major QTL controlling floral fire blight resistance on linkage group 3 (LG3) of Mr5. This QTL corresponds to the QTL on LG3 reported previously for the 'Idared' × Mr5 and an 'M9' × Mr5 population following shoot inoculation in the glasshouse. Interval mapping of phenotypic data from shoot inoculations of subsets from both flower resistance populations re-confirmed that the resistance QTL is in the same position on LG3 of Mr5 as that for flower inoculation. These results provide strong evidence that fire blight resistance in Mr5 is controlled by a major QTL on LG3, independently of the mode of infection, rootstock and environment. CONCLUSIONS: This study demonstrates for the first time that resistance to fire blight caused by Erwinia amylovora is independent of the mode of inoculation at least in Malus ×robusta 5.


Assuntos
Resistência à Doença/genética , Erwinia amylovora/fisiologia , Genes de Plantas , Ligação Genética , Malus/microbiologia , Doenças das Plantas/genética , Flores/microbiologia , Flores/fisiologia , Malus/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
2.
J Bacteriol ; 195(3): 510-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175650

RESUMO

Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Betaína/farmacologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Prolina/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Bacillus subtilis/classificação , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/genética , Betaína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Família Multigênica , Mutagênese Sítio-Dirigida , Concentração Osmolar , Pressão Osmótica , Plasmídeos , Prolina/metabolismo , Cloreto de Sódio
3.
New Phytol ; 197(4): 1262-1275, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23301854

RESUMO

Fire blight is a destructive bacterial disease caused by Erwinia amylovora affecting plants in the family Rosaceae, including apple. Host resistance to fire blight is present mainly in accessions of Malus spp. and is thought to be quantitative in this pathosystem. In this study we analyzed the importance of the E. amylovora effector avrRpt2(EA) , a homolog of Pseudomonas syringae avrRpt2, for resistance of Malus × robusta 5 (Mr5). The deletion mutant E. amylovora Ea1189ΔavrRpt2(EA) was able to overcome the fire blight resistance of Mr5. One single nucleotide polymorphism (SNP), resulting in an exchange of cysteine to serine in the encoded protein, was detected in avrRpt2(EA) of several Erwinia strains differing in virulence to Mr5. E. amylovora strains encoding serine (S-allele) were able to overcome resistance of Mr5, whereas strains encoding cysteine (C-allele) were not. Allele specificity was also observed in a coexpression assay with Arabidopsis thaliana RIN4 in Nicotiana benthamiana. A homolog of RIN4 has been detected and isolated in Mr5. These results suggest a system similar to the interaction of RPS2 from A. thaliana and AvrRpt2 from P. syringae with RIN4 as guard. Our data are suggestive of a gene-for-gene relationship for the host-pathogen system Mr5 and E. amylovora.


Assuntos
Proteínas de Bactérias/fisiologia , Erwinia amylovora/fisiologia , Genes Bacterianos/fisiologia , Genes de Plantas/fisiologia , Interações Hospedeiro-Patógeno/genética , Malus/microbiologia , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Resistência à Doença/genética , Peptídeos e Proteínas de Sinalização Intracelular , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Nicotiana/genética
4.
Arch Microbiol ; 195(10-11): 759-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077735

RESUMO

Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5­75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.


Assuntos
Ácido Acético/farmacologia , Erwinia amylovora/efeitos dos fármacos , Erwinia/efeitos dos fármacos , Doenças das Plantas/microbiologia , Propionatos/farmacologia , Erwinia/crescimento & desenvolvimento , Erwinia amylovora/crescimento & desenvolvimento , Malus/microbiologia , Pyrus/microbiologia
5.
Appl Environ Microbiol ; 76(18): 6248-56, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20656863

RESUMO

Pantoea stewartii subsp. stewartii is the causative agent of Stewart's wilt, a bacterial disease transmitted by the corn flea beetle mainly to sweet corn (Zea mays). In many countries, it is classified as a quarantine organism and must be differentiated from other yellow enteric bacteria frequently occurring with corn. We have created novel primers from the pstS-glmS region of P. stewartii for use in conventional PCR (cPCR) and quantitative PCR (qPCR). To facilitate rapid diagnosis, we applied matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Using whole-cell protein extracts, profiles were generated with a Bruker microflex machine, and the bacteria classified. P. stewartii strains were clearly distinguished from strains of Pantoea agglomerans, Pantoea dispersa, and Pantoea ananatis. Dendrogram analysis of the protein profiles confirmed the score values and showed the formation of separate clades for each species. The identification achieved by MALDI-TOF MS analysis agrees with the diagnosis by specific PCR primers. The combination of both methods allows a rapid and simple identification of the corn pathogen. P. stewartii subsp. stewartii and P. stewartii subsp. indologenes are highly related and can be distinguished not only by virulence assays and indole tests but also by a characteristic pattern in the nucleotide sequence of recA.


Assuntos
Extratos Celulares/genética , Pantoea/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Zea mays/microbiologia , Sequência de Bases , Análise por Conglomerados , Primers do DNA/genética , Dados de Sequência Molecular , Pantoea/classificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da Espécie
6.
Appl Environ Microbiol ; 76(9): 2704-11, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20208028

RESUMO

The use of naturally occurring microbial antagonists to suppress plant diseases offers a favorable alternative to classical methods of plant protection. The soybean epiphyte Pseudomonas syringae pv. syringae strain 22d/93 shows great potential for controlling P. syringae pv. glycinea, the causal agent of bacterial blight of soybean. Its activity against P. syringae pv. glycinea is highly reproducible even in field trials, and the suppression mechanisms involved are of special interest. In this work we demonstrated that P. syringae pv. syringae 22d/93 produced a significantly larger amount of siderophores than the pathogen P. syringae pv. glycinea produced. While P. syringae pv. syringae 22d/93 and P. syringae pv. glycinea produce the same siderophores, achromobactin and pyoverdin, the regulation of siderophore biosynthesis in the former organism is very different from that in the latter organism. The epiphytic fitness of P. syringae pv. syringae 22d/93 mutants defective in siderophore biosynthesis was determined following spray inoculation of soybean leaves. The population size of the siderophore-negative mutant P. syringae pv. syringae strain 22d/93DeltaSid was 2 orders of magnitude lower than that of the wild type 10 days after inoculation. The growth deficiency was compensated for when wound inoculation was used, indicating the availability of iron in the presence of small lesions on the leaves. Our results suggest that siderophore production has an indirect effect on the biocontrol activity of P. syringae pv. syringae 22d/93. Although siderophore-defective mutants of P. syringae pv. syringae 22d/93 still suppressed development of bacterial blight caused by P. syringae pv. glycinea, siderophore production enhanced the epiphytic fitness and thus the competitiveness of the antagonist.


Assuntos
Controle Biológico de Vetores , Pseudomonas syringae/metabolismo , Sideróforos/biossíntese , Antibiose , Citratos/biossíntese , Ácidos Cetoglutáricos , Oligopeptídeos/biossíntese , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Glycine max/microbiologia
7.
J Chem Ecol ; 36(11): 1180-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20890794

RESUMO

The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae) is a polyphagous predatory beetle native to Central and Eastern Asia. Since 2007 it has established all over Central Europe. In order to elucidate which defense strategy is responsible for its high resistance to diseases, we tested hemolymph as well as eleven main components of the headspace of H. axyridis for antimicrobial activity against Gram-positive (Bacillus subtilis, B. thuringiensis ssp. tenebrionis, Micrococcus luteus) and Gram-negative bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). While three of the volatile compounds weakly reduced the growth of microorganisms, hemolymph of adults and larvae of H. axyridis strongly inhibited the growth of Gram-positive and Gram-negative bacteria as well as yeast. Furthermore, we compared the antimicrobial activity in the hemolymph of H. axyridis and Coccinella septempunctata. Antimicrobial activity in H. axyridis was about a thousand times higher compared to hemolymph from C. septempunctata. In contrast to C. septempunctata, the antimicrobial activity in H. axyridis was present without prior challenge. Minimal inhibitory concentration (MIC) of the hemolymph of H. axyridis was lowest against E. coli and yeast followed by B. subtilis, and was highest against entomopathogenic B. thuringiensis ssp. tenebrionidae. Furthermore, MIC values of the hemolymph obtained from live beetles were significantly lower than from frozen insects. This suggests that the active antimicrobial compound is affected by freezing and subsequent thawing of the beetles. Potential implications of our findings for the competitive advantages of H. axyridis over C. septempunctata are discussed.


Assuntos
Anti-Infecciosos/farmacologia , Besouros/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Hemolinfa/fisiologia , Larva/fisiologia , Testes de Sensibilidade Microbiana , Compostos Orgânicos Voláteis/farmacologia
8.
Microbiol Res ; 181: 93-104, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26071988

RESUMO

Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov.


Assuntos
Sequência de Bases , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Madeira/microbiologia , Ácido Acético/metabolismo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Genes Bacterianos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Árvores/microbiologia
9.
Microbiol Res ; 168(7): 447-54, 2013 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-23570971

RESUMO

Fire blight, a bacteriosis of apple and pear, was assayed with molecular tools to associate its origin in Russia, Slovenia and south-eastern Austria with neighboring countries. The identification of all investigated strains was confirmed by MALDI-TOF mass spectroscopy except one. Independent isolation was verified by the level of amylovoran synthesis and by the number of short sequence DNA repeats in plasmid pEA29. DNA of gently lysed E. amylovora strains from Russia, Slovenia, Austria, Hungary, Italy, Spain, Croatia, Poland, Central Europe and Iran was treated with restriction enzymes XbaI and SpeI to create typical banding patterns for PFGE analysis. The pattern Pt2 indicated that most Russian E. amylovora strains were related to strains from Turkey and Iran. Strains from Slovenia exhibited patterns Pt3 and Pt2, both present in the neighboring countries. Strains were also probed for the recently described plasmid pEI70 detected in Pt1 strains from Poland and in Pt3 strains from other countries. The distribution of pattern Pt3 suggests distribution of fire blight from Belgium and the Netherlands to Central Spain and Northern Italy and then north to Carinthia. The PFGE patterns indicate that trade of plants may have introduced fire blight into southern parts of Europe proceeded by sequential spread.


Assuntos
Erwinia amylovora/isolamento & purificação , Doenças das Plantas/microbiologia , DNA Bacteriano/genética , Erwinia amylovora/classificação , Erwinia amylovora/genética , Europa (Continente) , Malus/microbiologia , Polônia , Pyrus/microbiologia , Eslovênia
10.
Microbiologyopen ; 1(4): 438-49, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23233458

RESUMO

The epiphyte Pantoea agglomerans 48b/90 (Pa48b) is a promising biocontrol strain against economically important bacterial pathogens such as Erwinia amylovora. Strain Pa48b produces the broad-spectrum antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (APV) in a temperature-dependent manner. An APV-negative mutant still suppressed the E. amylovora population and fire blight disease symptoms in apple blossom experiments under greenhouse conditions, but was inferior to the Pa48b wild-type indicating the influence of APV in the antagonism. In plant experiments with the soybean pathogen Pseudomonas syringae pv. glycinea both, Pa48b and the APV-negative mutant, successfully suppressed the pathogen. Our results demonstrate that the P. agglomerans strain Pa48b is an efficient biocontrol organism against plant pathogens, and we prove its ability for fast colonization of plant surfaces over a wide temperature range.


Assuntos
Antibacterianos/farmacologia , Erwinia amylovora/crescimento & desenvolvimento , Malus , Pantoea/química , Peptídeos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Peptídeos Catiônicos Antimicrobianos , Southern Blotting , Mutagênese Insercional , Pantoea/genética , Controle Biológico de Vetores/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA