Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(49): 14891-14898, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30407836

RESUMO

Novel RNA-based technologies provide an avenue of possibilities to control the regulation of gene expression in cells. To realize the full potential of small interfering RNA (siRNA)-based therapy, efficient delivery vehicles and novel strategies for triggering release from carrier vehicles have to be developed. Gold nanoparticles (AuNPs) with sizes of ∼50-150 nm have the ability to accumulate in tumor tissue and can be transported across the membrane by endocytosis. Therefore, a laser-controlled oligonucleotide release from such particles is of particular interest. Here, we quantify the loading of specifically attached microRNA oligonucleotides (miRNA) onto single gold nanoparticles with diameters of 80, 100, 150, and 200 nm. We show that AuNPs have a curvature-dependent density of miRNA loading: the higher the curvature, the higher the loading density. Moreover, we demonstrate how one sensing strand of an RNA duplex can be dehybridized and hence released from the AuNP by heating the AuNP by irradiation with a near-infrared (NIR) laser. Laser-induced release is also demonstrated inside living cells. Together, these findings show that plasmonic nanoparticles with high curvatures are ideal carriers of oligonucleotides into cells, and their cargo can be released in a controlled manner by a thermoplasmonic mechanism. Importantly, this remotely controlled release strategy can be applied to any cargo attached to a plasmonic nanocarrier, on either the single particle or ensemble level.


Assuntos
Portadores de Fármacos/química , Ouro/química , Lasers , Nanopartículas Metálicas/química , MicroRNAs/química , Carbocianinas/química , Portadores de Fármacos/efeitos da radiação , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Ouro/efeitos da radiação , Ouro/toxicidade , Células HEK293 , Calefação , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , MicroRNAs/genética , Hibridização de Ácido Nucleico/efeitos da radiação , Tamanho da Partícula
2.
Sci Rep ; 7: 43800, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262796

RESUMO

Two of the classical hallmarks of cancer are uncontrolled cell division and tissue invasion, which turn the disease into a systemic, life-threatening condition. Although both processes are studied, a clear correlation between cell division and motility of cancer cells has not been described previously. Here, we experimentally characterize the dynamics of invasive and non-invasive breast cancer tissues using human and murine model systems. The intrinsic tissue velocities, as well as the divergence and vorticity around a dividing cell correlate strongly with the invasive potential of the tissue, thus showing a distinct correlation between tissue dynamics and aggressiveness. We formulate a model which treats the tissue as a visco-elastic continuum. This model provides a valid reproduction of the cancerous tissue dynamics, thus, biological signaling is not needed to explain the observed tissue dynamics. The model returns the characteristic force exerted by an invading cell and reveals a strong correlation between force and invasiveness of breast cancer cells, thus pinpointing the importance of mechanics for cancer invasion.


Assuntos
Algoritmos , Movimento Celular , Modelos Biológicos , Imagem com Lapso de Tempo/métodos , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Cinética , Células MCF-7 , Neoplasias Mamárias Animais/patologia , Camundongos , Microscopia de Contraste de Fase , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA