Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 926585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909568

RESUMO

The androgen receptor (AR) signaling pathway is critical for growth and differentiation of prostate cancer cells. For that reason, androgen deprivation therapy with medical or surgical castration is the principal treatment for metastatic prostate cancer. More recently, new potent AR signaling inhibitors (ARSIs) have been developed. These drugs improve survival for men with metastatic castration-resistant prostate cancer (CRPC), the lethal form of the disease. However, ARSI resistance is nearly universal. One recently appreciated resistance mechanism is lineage plasticity or switch from an AR-driven, luminal differentiation program to an alternate differentiation program. Importantly, lineage plasticity appears to be increasing in incidence in the era of new ARSIs, strongly implicating AR suppression in this process. Lineage plasticity and shift from AR-driven tumors occur on a continuum, ranging from AR-expressing tumors with low AR activity to AR-null tumors that have activation of alternate differentiation programs versus the canonical luminal program found in AR-driven tumors. In many cases, AR loss coincides with the activation of a neuronal program, most commonly exemplified as therapy-induced neuroendocrine prostate cancer (t-NEPC). While genetic events clearly contribute to prostate cancer lineage plasticity, it is also clear that epigenetic events-including chromatin modifications and DNA methylation-play a major role. Many epigenetic factors are now targetable with drugs, establishing the importance of clarifying critical epigenetic factors that promote lineage plasticity. Furthermore, epigenetic marks are readily measurable, demonstrating the importance of clarifying which measurements will help to identify tumors that have undergone or are at risk of undergoing lineage plasticity. In this review, we discuss the role of AR pathway loss and activation of a neuronal differentiation program as key contributors to t-NEPC lineage plasticity. We also discuss new epigenetic therapeutic strategies to reverse lineage plasticity, including those that have recently entered clinical trials.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Carcinoma Neuroendócrino/patologia , Epigênese Genética , Humanos , Masculino , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
2.
Nat Commun ; 13(1): 5345, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109521

RESUMO

The androgen receptor (AR) signaling inhibitor enzalutamide (enza) is one of the principal treatments for metastatic castration-resistant prostate cancer (CRPC). Several emergent enza clinical resistance mechanisms have been described, including lineage plasticity in which the tumors manifest reduced dependency on the AR. To improve our understanding of enza resistance, herein we analyze the transcriptomes of matched biopsies from men with metastatic CRPC obtained prior to treatment and at progression (n = 21). RNA-sequencing analysis demonstrates that enza does not induce marked, sustained changes in the tumor transcriptome in most patients. However, three patients' progression biopsies show evidence of lineage plasticity. The transcription factor E2F1 and pathways linked to tumor stemness are highly activated in baseline biopsies from patients whose tumors undergo lineage plasticity. We find a gene signature enriched in these baseline biopsies that is strongly associated with poor survival in independent patient cohorts and with risk of castration-induced lineage plasticity in patient-derived xenograft models, suggesting that tumors harboring this gene expression program may be at particular risk for resistance mediated by lineage plasticity and poor outcomes.


Assuntos
Fator de Transcrição E2F1 , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Receptores de Andrógenos/farmacologia , Benzamidas , Biópsia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição E2F1/metabolismo , Humanos , Masculino , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
3.
Eur Urol ; 80(1): 71-81, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33785255

RESUMO

CONTEXT: In addition to genetic alterations, epigenetic alterations play a crucial role during prostate cancer progression. A better understanding of the epigenetic factors that promote prostate cancer progression may lead to the design of rational therapeutic strategies to target prostate cancer more effectively. OBJECTIVE: To systematically review recent literature on the role of epigenetic factors in prostate cancer and highlight key preclinical and translational data with epigenetic therapies. EVIDENCE ACQUISITION: We performed a systemic literature search in PubMed. At the request of the editors, we limited our search to articles published between January 2015 and August 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Clinical trials targeting epigenetic factors were retrieved from clinicaltrials.gov. EVIDENCE SYNTHESIS: We retrieved 1451 articles, and 62 were finally selected for review. Twelve additional foundational studies outside this time frame were also included. Findings from both preclinical and clinical studies were reviewed and summarized. We also discuss 12 ongoing clinical studies with epigenetic targeted therapies. CONCLUSIONS: Epigenetic mechanisms impact prostate cancer progression. Understanding the role of specific epigenetic factors is critical to determine how we may improve prostate cancer treatment and modulate resistance to standard therapies. Recent preclinical studies and ongoing or completed clinical studies with epigenetic therapies provide a useful roadmap for how to best deploy epigenetic therapies clinically to target prostate cancer. PATIENT SUMMARY: Epigenetics is a process by which gene expression is regulated without changes in the DNA sequence itself. Oftentimes, epigenetic changes influence cellular behavior and contribute to cancer development or progression. Understanding how epigenetic changes occur in prostate cancer is the first step toward therapeutic targeting in patients. Importantly, laboratory-based studies and recently completed and ongoing clinical trials suggest that drugs targeting epigenetic factors are promising. More work is necessary to determine whether this class of drugs will add to our existing treatment arsenal in prostate cancer.


Assuntos
Preparações Farmacêuticas , Neoplasias da Próstata , Biomarcadores , Metilação de DNA , Epigênese Genética , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética
4.
Med Oncol ; 37(2): 12, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31865465

RESUMO

We performed a prospective trial to assess the clinical benefit of a tailored gene set built on a next-generation sequencing (NGS) platform in patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Archived tumor tissue obtained from patients with recurrent or metastatic HNSCC was analyzed for variants by a tailored Comprehensive Cancer Gene set of 40 genes (CCG-40) performed on a NGS platform. These data were provided to clinicians to inform treatment decisions. The primary endpoint was clinical benefit (disease control) that resulted from selection and administration of a targeted therapy based on results of the CCG-40. Barriers to performance and implementation of the assay were recorded. Forty patients enrolled. Primary tumor sites included oropharynx (14), larynx/hypopharynx (14), oral cavity (9), and nasopharynx (3). The CCG-40 assay was performed in 23 patients (57.5%), but not in 17 patients due inadequate financial coverage (12) or insufficient tumor tissue (5). Potentially actionable tumor variants were identified in 3 patients (7.5%); all were PIK3CA variants. Due to inability to obtain access to candidate drugs (2) or rapid decline in performance status (1), none of these patients received targeted therapy informed by the CCG-40 results. The CCG-40 assay did not provide clinical benefit to the patients on this trial. Identification of limitations of the assay and barriers to the test's performance and application may be used to optimize this strategy in future trials.


Assuntos
Biomarcadores Tumorais/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias de Cabeça e Pescoço/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Recidiva Local de Neoplasia/genética , Adulto , Idoso , Biomarcadores Tumorais/análise , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Bases de Dados Genéticas , Intervalo Livre de Doença , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Seleção de Pacientes , Estudos Prospectivos
5.
J Heart Lung Transplant ; 36(5): 554-558, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28073609

RESUMO

BACKGROUND: Donors are matched for weight in pediatric heart transplantation (PHT), yet age differences are not considered in this decision. In this study we attempt to identify the effect of age differences in weight-matched patients and the effect these differences have on post-transplant survival. METHODS: The United Network of Organ Sharing (UNOS) database was queried for the period from October 1987 to March 2014 for all pediatric heart transplant patients. Transplants with donor-to-recipient (D-R) weight ratios of 0.8 to 1.5 were identified (weight-matched). D-R age differences were categorized as: donors 5 years younger than recipients (DR+5). RESULTS: A total of 4,408 patients were identified as weight-matched transplants. Of these transplants, 681 were D>R+5, 3,596 were D=R±5 and 131 were DR+5 transplants were found to be associated with decreased post-transplant survival compared with D=R±5 (p = 0.002). Rates of acute rejection were similar among all groups but post-transplant coronary allograft vasculopathy (CAV) was more prevalent in D>R+5 than D=R±5 patients (28% and 18%, respectively; p < 0.001). Increasing age difference by each year was associated with decreasing median post-transplant survival time (p < 0.001; hazard ratio 1.018, range 1.011 to 1.025). The overall negative association with mortality was due to the adolescent cohort (11 to 17 years), specifically D>R+5 transplants, utilizing organs from donors >25 of age. CONCLUSION: In PHT, increasing D-R age difference decreases survival; however, this effect is driven by recipients 11 to 17 years old and donors >25 years old. Allocation of younger donor organs to adolescent recipients should be a priority.


Assuntos
Peso Corporal , Rejeição de Enxerto/mortalidade , Transplante de Coração/métodos , Doadores Vivos , Tamanho do Órgão , Obtenção de Tecidos e Órgãos , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Bases de Dados Factuais , Feminino , Sobrevivência de Enxerto , Transplante de Coração/efeitos adversos , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco , Doadores de Tecidos , Transplantados , Resultado do Tratamento , Estados Unidos
6.
Metabolomics ; 10(3): 496-507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24772058

RESUMO

Many plants accumulate large quantities of specialized metabolites in secretory glandular trichomes (SGTs), which are specialized epidermal cells. In the genus Solanum, SGTs store a diverse collection of glucose and sucrose esters. Profiling of extracts from two accessions (LA1777 and LA1392) of Solanum habrochaites using ultra-high performance liquid chromatography-mass spectrometry (UHPLC/MS) revealed wide acylsugar diversity, with up to 11 isomers annotated for each individual elemental formula. These isomers arise from differences in ester chain lengths and their positions of substitution or branching. Since fragment ion masses were not sufficient to distinguish all isomers, 24 acylsucroses were purified from S. habrochaites accessions and cultivated tomato (Solanum lycopersicum M82) and characterized using NMR spectroscopy. Two-dimensional NMR spectra yielded assignments of positions of substitution of specific acyl groups, and locations of branching. The range of substitution was wider than reported earlier, and in contrast to previous reports, tetra- and penta-acylsucroses were substituted at position 2 with acyl groups other than acetate. Because UHPLC/MS fails to yield sufficient information about structure diversity, and quantitative NMR of acylsugar mixtures is confounded by structural redundancy, the strategic combination of NMR and UHPLC/MS provides a powerful approach for profiling a class of metabolites with great structural diversity across genotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA