Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Cell ; 159(1): 13-14, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25259915

RESUMO

Circular RNAs are generated during splicing through various mechanisms. Ashwal-Fluss et al. demonstrate that exon circularization and linear splicing compete with each other in a tissue-specific fashion, and Zhang et al. show that exon circularization depends on flanking intronic complementary sequences. Both papers show that several types of circular RNA transcripts can be produced from a single gene.


Assuntos
Drosophila/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA/biossíntese , Animais , Humanos
2.
Nucleic Acids Res ; 52(3): 1374-1386, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38050960

RESUMO

tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.


Assuntos
Escherichia coli , Mycoplasma mycoides , RNA Bacteriano , RNA de Transferência de Glicina , Anticódon/genética , Sequência de Bases , Códon/genética , Escherichia coli/genética , Glicina/genética , RNA de Transferência/genética , RNA de Transferência de Glicina/genética , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , RNA Bacteriano/genética
3.
Nucleic Acids Res ; 52(D1): D1024-D1032, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941143

RESUMO

The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.


Assuntos
Bombyx , Genoma de Inseto , Animais , Bombyx/genética , Biologia Computacional , Genômica , Metadados , Multiômica
4.
RNA ; 29(5): 551-556, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759127

RESUMO

Analysis of the profile of the tRNA modifications in several Archaea allowed us to observe a novel modified uridine in the V-loop of several tRNAs from two species: Pyrococcus furiosus and Sulfolobus acidocaldarius Recently, Ohira and colleagues characterized 2'-phosphouridine (Up) at position 47 in tRNAs of thermophilic Sulfurisphaera tokodaii, as well as in several other archaea and thermophilic bacteria. From the presence of the gene arkI corresponding to the RNA kinase responsible for Up47 formation, they also concluded that Up47 should be present in tRNAs of other thermophilic Archaea Reanalysis of our earlier data confirms that the unidentified residue in tRNAs of both P. furiosus and S. acidocaldarius is indeed 2'-phosphouridine followed by m5C48. Moreover, we find this modification in several tRNAs of other Archaea and of the hyperthermophilic bacterium Aquifex aeolicus.


Assuntos
Archaea , Sulfolobus , Archaea/genética , Bactérias/genética , Sulfolobus/genética
5.
RNA ; 29(7): 1069-1076, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068913

RESUMO

Wobble GU pairs (or G•U) occur frequently within double-stranded RNA helices interspersed between standard G=C and A-U Watson-Crick pairs. Another type of G•U pair interacting via their Watson-Crick edges has been observed in the A site of ribosome structures between a modified U34 in the tRNA anticodon triplet and G + 3 in the mRNA. In such pairs, the electronic structure of the U is changed with a negative charge on N3(U), resulting in two H-bonds between N1(G)…O4(U) and N2(G)…N3(U). Here, we report that such pairs occur in other highly conserved positions in ribosomal RNAs of bacteria in the absence of U modification. An anionic cis Watson-Crick G•G pair is also observed and well conserved in the small subunit. These pairs are observed in tightly folded regions.


Assuntos
RNA Ribossômico , Ribossomos , Códon , Conformação de Ácido Nucleico , Ribossomos/genética , Ribossomos/química , RNA Ribossômico/genética , RNA Ribossômico/análise , Anticódon , Bactérias/genética
6.
Nucleic Acids Res ; 51(16): 8677-8690, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503833

RESUMO

In severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the non-structural protein NSP1 inhibits translation of host mRNAs by binding to the mRNA entry channel of the ribosome and, together with the 5'-untranslated region (UTR) of the viral mRNAs, allows the evasion of that inhibition. Here, we show that NSP1 mediates endonucleolytic cleavages of both host and viral mRNAs in the 5'UTR, but with different cleavage patterns. The first pattern is observed in host mRNAs with cleavages interspersed regularly and close to the 5' cap (6-11 nt downstream of the cap). Those cleavage positions depend more on the position relative to the 5' cap than on the sequence itself. The second cleavage pattern occurs at high NSP1 concentrations and only in SARS-CoV-2 RNAs, with the cleavages clustered at positions 45, 46 and 49. Both patterns of cleavage occur with the mRNA and NSP1 bound to the ribosome, with the SL1 hairpin at the 5' end sufficient to protect from NSP1-mediated degradation at low NSP1 concentrations. We show further that the N-terminal domain of NSP1 is necessary and sufficient for efficient cleavage. We suggest that in the ribosome-bound NSP1 protein the catalytic residues of the N-terminal domain are unmasked by the remodelling of the α1- and α2-helices of the C-terminal domain.


Assuntos
RNA Mensageiro , Ribossomos , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Biossíntese de Proteínas , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo
7.
J Biol Chem ; 299(7): 104852, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224963

RESUMO

The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.


Assuntos
Código Genético , Biossíntese de Proteínas , RNA de Transferência , Humanos , Aminoácidos/metabolismo , Códon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Prolina/metabolismo , Biossíntese de Proteínas/genética , Proteínas/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Treonina/metabolismo , Streptomyces/genética , Mutação , Proteoma
8.
RNA ; 28(5): 729-741, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236777

RESUMO

The 5'UTR part of coronavirus genomes plays key roles in the viral replication cycle and translation of viral mRNAs. The first 75-80 nt, also called the leader sequence, are identical for genomic mRNA and subgenomic mRNAs. Recently, it was shown that cooperative actions of a 5'UTR segment and the nonstructural protein NSP1 are essential for both the inhibition of host mRNAs and for specific translation of viral mRNAs. Here, sequence analyses of both the 5'UTR RNA segment and the NSP1 protein have been done for several coronaviruses, with special attention to the betacoronaviruses. The conclusions are: (i) precise specific molecular signatures can be found in both the RNA and the NSP1 protein; (ii) both types of signatures correlate between each other. Indeed, definite sequence motifs in the RNA correlate with sequence motifs in the protein, indicating a coevolution between the 5'UTR and NSP1 in betacoronaviruses. Experimental mutational data on 5'UTR and NSP1 from SARS-CoV-2 using cell-free translation extracts support these conclusions and show that some conserved key residues in the amino-terminal half of the NSP1 protein are essential for evasion to the inhibitory effect of NSP1 on translation.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , Regiões 5' não Traduzidas , COVID-19/virologia , Humanos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/química , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
RNA ; 28(2): 250-262, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34819324

RESUMO

In silico prediction is a well-established approach to derive a general shape of an RNA molecule based on its sequence or secondary structure. This paper reports an analysis of the stereochemical quality of the RNA three-dimensional models predicted using dedicated computer programs. The stereochemistry of 1052 RNA 3D structures, including 1030 models predicted by fully automated and human-guided approaches within 22 RNA-Puzzles challenges and reference structures, is analyzed. The evaluation is based on standards of RNA stereochemistry that the Protein Data Bank requires from deposited experimental structures. Deviations from standard bond lengths and angles, planarity, or chirality are quantified. A reduction in the number of such deviations should help in the improvement of RNA 3D structure modeling approaches.


Assuntos
Simulação de Dinâmica Molecular/normas , RNA/química , Animais , Humanos , Conformação de Ácido Nucleico
10.
Cell ; 136(4): 604-9, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19239882

RESUMO

A wealth of information on RNA folding and ribonucleoprotein assembly has emerged from analyses of structures and from the use of innovative biophysical tools. Although integrating data obtained from static structures with dynamic measurements presents major challenges, such efforts are opening new vistas on the RNA folding landscape.


Assuntos
RNA/química , Animais , Sequência de Bases , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA