Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(8): 2312-7, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26755604

RESUMO

Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.


Assuntos
Lignina/metabolismo , Microbiota , Populus/metabolismo , Populus/microbiologia , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carga Bacteriana , Biomassa , Ácidos Cumáricos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Simbiose , Árvores/genética , Árvores/metabolismo , Árvores/microbiologia
2.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188207

RESUMO

The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica's microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonadales, especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica, whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies.IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of phytoremediation treatments and the understanding that the interactions of plants with soil bacteria are crucial for the optimization of arsenic uptake. To address this in our work, we initially performed a microbiome analysis of the autochthonous Betula celtiberica plants growing in arsenic-contaminated soils, including endosphere and rhizosphere bacterial communities. We then proceeded to isolate and characterize the cultivable bacteria that were potentially better suited to enhance phytoextraction efficiency. Eventually, we went to the field application stage. Our results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Betula/microbiologia , Endófitos/metabolismo , Consórcios Microbianos/fisiologia , Rizosfera , Poluentes do Solo/metabolismo , Arsênio/farmacologia , Bactérias/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Betula/química , Betula/fisiologia , Biodegradação Ambiental , Flavobacterium/efeitos dos fármacos , Flavobacterium/isolamento & purificação , Flavobacterium/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Resíduos Industriais , Desenvolvimento Vegetal , Folhas de Planta/química , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Pseudomonas/efeitos dos fármacos , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Poluentes do Solo/análise
3.
Int J Phytoremediation ; 19(1): 23-38, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27484694

RESUMO

Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.


Assuntos
Biodegradação Ambiental , Microbiota , Plantas/metabolismo , Plantas/microbiologia , Poluentes do Solo/metabolismo
4.
Int J Phytoremediation ; 19(10): 955-963, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28598213

RESUMO

Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Gasolina , Solo , Poluentes do Solo
5.
Int J Phytoremediation ; 19(2): 142-156, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27409290

RESUMO

Plants on contaminated mining soils often show a reduced growth due to nutrient depletion as well as trace elements (TEs) toxicity. Since those conditions threat plant's survival, plant growth-promoting rhizobacteria (PGPRs), such as rhizobia, might be of crucial importance for plant colonization on TE-contaminated soils. Native rhizobia from mining soils are promising candidates for bioaugmented phytoremediation of those soils as they are adapted to the specific conditions. In this work, rhizobia from Zn- and Cd-contaminated mining soils were in vitro screened for their PGP features [organic acids, indole-3-acetic acid (IAA), and siderophore (SID) production; 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity; and Ca3(PO4)2 solubilization] and Zn and Cd tolerance. In addition, some type and reference rhizobia strains were included in the study as well. The in vitro screening indicated that rhizobia and other native genera have great potential for phytoremediation purposes, by exerting, besides biological N2 fixation, other plant growth-promoting traits. Leucaena leucocephala-Mesorhizobium sp. (UFLA 01-765) showed multielement tolerance and an efficient symbiosis on contaminated soil, decreasing the activities of antioxidative enzymes in shoots. This symbiosis is a promising combination for phytostabilization.


Assuntos
Fabaceae/metabolismo , Fabaceae/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Simbiose , Zinco/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Mesorhizobium/classificação , Mesorhizobium/genética , Mesorhizobium/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , RNA Ribossômico 16S/genética
6.
Int J Phytoremediation ; 19(10): 925-936, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323446

RESUMO

Efficient N2-fixing Leguminosae nodulating bacteria resistant to As may facilitate plant growth on As-contaminated sites. In order to identify bacteria holding these features, 24 strains were isolated from nodules of the trap species Crotalaria spectabilis (12) and Stizolobium aterrimum (12) growing on an As-contaminated gold mine site. 16S rRNA gene sequencing revealed that most of the strains belonged to the group of α-Proteobacteria, being representatives of the genera Bradyrhizobium, Rhizobium, Inquilinus, Labrys, Bosea, Starkeya, and Methylobacterium. Strains of the first four genera showed symbiotic efficiency with their original host, and demonstrated in vitro specific plant-growth-promoting (PGP) traits (production of organic acids, indole-3-acetic-acid and siderophores, 1-aminocyclopropane-1-carboxylate deaminase activity, and Ca3(PO4)2 solubilization), and increased resistance to As, Zn, and Cd. In addition, these strains and some type and reference rhizobia strains exhibited a wide resistance spectrum to ß-lactam antibiotics. Both intrinsic PGP abilities and multi-element resistance of rhizobia are promising for exploiting the symbiosis with different legume plants on trace-element-contaminated soils.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Fabaceae/microbiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Ouro , Minerais , Mineração , Desenvolvimento Vegetal , Plantas , RNA Ribossômico 16S , Solo , Oligoelementos
7.
Int J Mol Sci ; 18(10)2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934107

RESUMO

Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.


Assuntos
Cádmio/metabolismo , Endófitos/metabolismo , Pseudomonas/metabolismo , Serratia/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Zinco/metabolismo , Biodegradação Ambiental , Brassica napus/microbiologia , Cádmio/toxicidade , Endófitos/efeitos dos fármacos , Endófitos/crescimento & desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/microbiologia , Microscopia Confocal , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Serratia/efeitos dos fármacos , Serratia/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Tiobarbitúricos/metabolismo , Zinco/toxicidade
8.
Int J Phytoremediation ; 18(10): 985-93, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-27159736

RESUMO

The interaction between plant growth-promoting bacteria (PGPB) and plants can enhance biomass production and metal tolerance of the host plants. This work aimed at isolating and characterizing the cultivable bacterial community associated with Brassica napus growing on a Zn-contaminated site, for selecting cultivable PGPB that might enhance biomass production and metal tolerance of energy crops. The effects of some of these bacterial strains on root growth of B. napus exposed to increasing Zn and Cd concentrations were assessed. A total of 426 morphologically different bacterial strains were isolated from the soil, the rhizosphere, and the roots and stems of B. napus. The diversity of the isolated bacterial populations was similar in rhizosphere and roots, but lower in soil and stem compartments. Burkoholderia, Alcaligenes, Agrococcus, Polaromonas, Stenotrophomonas, Serratia, Microbacterium, and Caulobacter were found as root endophytes exclusively. The inoculation of seeds with Pseudomonas sp. strains 228 and 256, and Serratia sp. strain 246 facilitated the root development of B. napus at 1,000 µM Zn. Arthrobacter sp. strain 222, Serratia sp. strain 246, and Pseudomonas sp. 228 and 262 increased the root length at 300 µM Cd.


Assuntos
Brassica napus/microbiologia , Microbiota , Raízes de Plantas/microbiologia , Microbiologia do Solo , Poluentes do Solo/metabolismo , Zinco/metabolismo , Bélgica , Biomassa , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Cádmio/metabolismo , DNA Bacteriano/genética , Microbiota/efeitos dos fármacos , Microbiota/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo/toxicidade
9.
Environ Microbiol ; 17(7): 2379-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25367683

RESUMO

Plant-associated bacteria are intensively investigated concerning their characteristics for plant growth promotion, biocontrol mechanisms and enhanced phytoremediation efficiency. To obtain endophytes, different sampling and isolation protocols are used although their representativeness is not always clearly demonstrated. The objective of this study was to acquire representative pictures of the cultivable bacterial root, stem and leaf communities for all Brassica napus L. individuals growing on the same field. For each plant organ, genotypic identifications of the endophytic communities were performed using three replicates. Root replicates were composed of three total root systems, whereas stem and leaf replicates needed to consist of six independent plant parts in order to be representative. Greater variations between replicates were found when considering phenotypic characteristics. Correspondence analysis revealed reliable phenotypic results for roots and even shoots, but less reliable ones for leaves. Additionally, realistic Shannon-Wiener biodiversity indices were calculated for all three organs and showed similar Evenness factors. Furthermore, it was striking that all replicates and thus the whole plant contained Pseudomonas and Bacillus strains although aboveground and belowground plant tissues differed in most dominant bacterial genera and characteristics.


Assuntos
Bacillus/crescimento & desenvolvimento , Brassica napus/microbiologia , Endófitos/crescimento & desenvolvimento , Pseudomonas/crescimento & desenvolvimento , Bacillus/classificação , Biodiversidade , Endófitos/classificação , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Pseudomonas/classificação
10.
Int J Phytoremediation ; 17(11): 1123-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942689

RESUMO

Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.


Assuntos
Bactérias/metabolismo , Metais/metabolismo , Salix/metabolismo , Poluentes do Solo/metabolismo , Bélgica , Biodegradação Ambiental , Biomassa , Salix/genética , Salix/microbiologia , Especificidade da Espécie
11.
Int J Mol Sci ; 16(10): 25576-604, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26516837

RESUMO

Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant-microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented.


Assuntos
Poluentes Atmosféricos/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Rizosfera , Biodegradação Ambiental , Microbiota , Plantas/metabolismo
12.
Ann Bot ; 110(2): 239-52, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22634257

RESUMO

BACKGROUND AND SCOPE: Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. METHODS: Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. KEY RESULTS: The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. CONCLUSIONS: Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/microbiologia , Bactérias/crescimento & desenvolvimento , Cádmio/toxicidade , Cobre/toxicidade , Variação Genética , Genótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Simbiose , Zinco/toxicidade
13.
Microbiome ; 8(1): 127, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907632

RESUMO

BACKGROUND: The beneficial use of nanoparticle silver or nanosilver may be confounded when its potent antimicrobial properties impact non-target members of natural microbiomes such as those present in soil or the plant rhizosphere. Agricultural soils are a likely sink for nanosilver due to its presence in agrochemicals and land-applied biosolids, but a complete assessment of nanosilver's effects on this environment is lacking because the impact on the natural soil microbiome is not known. In a study assessing the use of nanosilver for phytopathogen control with maize, we analyzed the metatranscriptome of the maize rhizosphere and observed multiple unintended effects of exposure to 100 mg kg-1 nanosilver in soil during a growth period of 117 days. RESULTS: We found several unintended effects of nanosilver which could interfere with agricultural systems in the long term. Firstly, the archaea community was negatively impacted with a more than 30% decrease in relative abundance, and as such, their involvement in nitrogen cycling and specifically, nitrification, was compromised. Secondly, certain potentially phytopathogenic fungal groups showed significantly increased abundances, possibly due to the negative effects of nanosilver on bacteria exerting natural biocontrol against these fungi as indicated by negative interactions in a network analysis. Up to 5-fold increases in relative abundance have been observed for certain possibly phytopathogenic fungal genera. Lastly, nanosilver exposure also caused a direct physiological impact on maize as illustrated by increased transcript abundance of aquaporin and phytohormone genes, overall resulting in a stress level with the potential to yield hormetically stimulated plant root growth. CONCLUSIONS: This study indicates the occurrence of significant unintended effects of nanosilver use on corn, which could turn out to be negative to crop productivity and ecosystem health in the long term. We therefore highlight the need to include the microbiome when assessing the risk associated with nano-enabled agriculture. Video Abstract.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hormese/efeitos dos fármacos , Nanopartículas Metálicas , Nitrogênio/metabolismo , Prata/efeitos adversos , Prata/farmacologia , Transcriptoma/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Ecossistema , Fungos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/microbiologia , Rizosfera , Transcriptoma/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/microbiologia
14.
Appl Environ Microbiol ; 75(3): 748-57, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19060168

RESUMO

The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant growth promotion. Members of the Gammaproteobacteria dominated a collection of 78 bacterial endophytes isolated from poplar and willow trees. As representatives for the dominant genera of endophytic gammaproteobacteria, we selected Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant growth-promoting effects, including root development. Derivatives of these endophytes, labeled with gfp, were also used to study the colonization of their poplar hosts. In greenhouse studies, poplar cuttings (Populus deltoides x Populus nigra DN-34) inoculated with Enterobacter sp. strain 638 repeatedly showed the highest increase in biomass production compared to cuttings of noninoculated control plants. Sequence data combined with the analysis of their metabolic properties resulted in the identification of many putative mechanisms, including carbon source utilization, that help these endophytes to thrive within a plant environment and to potentially affect the growth and development of their plant hosts. Understanding the interactions between endophytic bacteria and their host plants should ultimately result in the design of strategies for improved poplar biomass production on marginal soils as a feedstock for biofuels.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Populus/microbiologia , Populus/fisiologia , Simbiose , Biomassa , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Genoma Bacteriano , Dados de Sequência Molecular , Filogenia , Populus/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
15.
J Comb Chem ; 11(2): 243-51, 2009 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-19199643

RESUMO

Asymmetric, nanosized zeolite-filled solvent resistant nanofiltration (SRNF) membranes, prepared from emulsified polyimide (PI) solutions via the earlier reported solidification of emulsified polymer solutions via phase inversion (SEPPI) method, were optimized for their performance in the separation of rose bengal (RB) from 2-propanol (IPA). All membranes were prepared and tested in a parallellized, miniaturized, and automated manner using laboratory-developed high-throughput experimentation techniques. Nine different synthesis parameters related to the composition of the casting solutions were thus optimized. In a first, "conventional" approach, a preliminary systematic screening was carried out, in which only four constituents were used, that is, Matrimid PI, NMP as solvent, THF as volatile cosolvent, and an NMP-based zeolite precursor sol as emulsifying agent. A combinatorial strategy, based on a genetic algorithm and a self-adaptive evolutionary strategy, was then applied to optimize the SRNF performance of PI-based SEPPI membranes. This directed approach allowed the screening of an extended, 9-dimensional parameter space, comprising two extra solvents, the two corresponding nanosized zeolite suspensions, as well as another cosolvent. Coupling with high-throughput techniques allowed the preparation of three generations of casting solutions, 176 compositions in total, resulting in 125 testable membranes. With IPA permeances up to 3.3 L.m(-2) h(-1) bar(-1) and RB rejections around 98%, the combinatorially optimized membranes scored significantly better with respect to fluxes and selectivities than the best membranes obtained in the systematic screening. The best SEPPI membranes also showed much higher IPA permeances than two commercial SRNF membranes at similar or slightly lower RB rejections.


Assuntos
Filtração/instrumentação , Imidas/química , Membranas Artificiais , Polímeros/química , Rosa Bengala/isolamento & purificação , 2-Propanol/química , Algoritmos , Emulsões/química , Nanoestruturas/química
16.
Front Microbiol ; 10: 675, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024477

RESUMO

The aerial surfaces of plants harbor diverse communities of microorganisms. The rising awareness concerning the potential roles of these phyllosphere microbiota for airborne pollutant remediation and plant growth promotion, advocates for a better understanding of their community structure and dynamics in urban ecosystems. Here, we characterized the epiphytic microbial communities on leaves of Platanus × hispanica trees in the city centre of Hasselt (Belgium), and the nearby forest area of Bokrijk, Genk (Belgium). We compared the influences of season, site, and air pollutants concentration variations on the tree's phyllosphere microbiome by determining the intra- and inter-individual variation in leaf bacterial communities. High-throughput amplicon sequencing of the 16S rRNA gene revealed large variation in the bacterial community structure and diversity throughout the years but also allowed to discriminate an environment effect on community assembly. Partial drivers for this environment effect on composition can be correlated with the huge differences in ultrafine particulate matter (UFP) and black carbon on the leaves. A change in bacterial community composition was noted for trees growing in the city center compared to the natural site, and also more human-associated genera were found colonizing the leaves from the city center. These integrated results offer an original and first insight in the Platanus phyllomicrobiota, which can offer new opportunities to use phyllosphere microorganisms to enhance air pollution degradation.

17.
Front Microbiol ; 10: 1892, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474967

RESUMO

Chlorendic acid is a recalcitrant, highly chlorinated organic pollutant for which no microbial degrader has yet been identified. To address this knowledge gap, fungi were isolated from bulk soil, rhizosphere, and roots of the common bent (Agrostis capillaris) and the hybrid poplar [Populus deltoides × (Populus trichocarpa × P. deltoides) cv. Grimminge], both of which grow on a chlorendic acid polluted site in Belgium. Isolates were taxonomically identified and phenotypically screened for chlorendic acid degradation. Several fungal isolates could degrade chlorendic acid in liquid media up to 45%. The chlorendic acid degrading fungal isolates produced higher levels of hydroxyl radicals when exposed to the pollutant when compared to non-exposed controls, suggesting that the oxidative degradation of chlorendic acid occurs through production of Fenton-mediated hydroxyl radicals. In addition, the isolated Ascomycete Penicillium sp. 1D-2a degraded 58% of the original chlorendic acid concentration in the soil after 28 days. This study demonstrates that the presence of fungi in a chlorendic acid polluted soil can degrade this highly chlorinated organic pollutant. These results indicate that recalcitrant, seemingly non-biologically degradable organic pollutants, such as chlorendic acid, can be remediated by using bioremediation, which opens new perspectives for in situ bioremediation.

18.
Front Plant Sci ; 9: 1526, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405664

RESUMO

Plants and their associated bacteria play a crucial role in constructed wetlands. In this study, the impact of different levels of pollution and bioaugmentation with indigenous strains individually or in consortia was investigated on the composition of the endophytic microbial communities of Juncus acutus. Five treatments were examined and compared in where the wetland plant was exposed to increasing levels of metal pollution (Zn, Ni, Cd) and emerging pollutants (BPA, SMX, CIP), enriched with different combinations of single or mixed endophytic strains. High levels of mixed pollution had a negative effect on alpha diversity indices of the root communities; moreover, the diversity indices were negatively correlated with the increasing metal concentrations. It was demonstrated that the root communities were separated depending on the level of mixed pollution, while the family Sphingomonadaceae exhibited the higher relative abundance within the root endophytic communities from high and low polluted treatments. This study highlights the effects of pollution and inoculation on phytoremediation efficiency based on a better understanding of the plant microbiome community composition.

19.
Front Plant Sci ; 9: 1879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622547

RESUMO

Phytoextraction could be a potential management option for diffusely Cd-Zn-Pb-polluted agricultural land in Northeast Belgium. The use of high yielding crops with a sufficiently high metal accumulation is preferred as these are expected to both gradually decontaminate the soil while generating an income through biomass valorization. To find out which high biomass crop possessed the highest and most constant (in time) phytoextraction potential on these soils, different plant species and different mutants or clones of each species, were evaluated during consecutive years. Biomass production and metal accumulation of pre-selected tobacco somaclonal variants (Nicotiana tabacum L.) and pre-selected sunflower mutants (Helianthus annuus L.) were investigated for two productivity years, while the phytoextraction potential of experimental poplar (Populus) and willow (Salix) in short rotation coppice (SRC) was assessed at the end of the second cutting cycle (after two times four growing seasons). The tobacco clones and the sunflower mutants showed efficient extraction of, respectively, Cd and Zn, while the highest simultaneous extractions of Cd and Zn were gained with some SRC clones. Variation in biomass production and metal accumulation were high for all crops over the years. The highest biomass production was observed for the experimental poplar clone of the crossing type Populus deltoides (P. maximowiczii x P. trichocarpa) with 9.9 ton DW per ha per year. The remediation period to reach legal threshold values for the pseudo-total content of Cd in this specific soil was estimated to be at least 60 years. Combining estimated phytoextraction potential and economic and environmental aspects, the SRC option is proposed as the most suitable crop for implementing metal phytoextraction in the investigated area.

20.
Front Plant Sci ; 9: 1134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123233

RESUMO

Military activities have worldwide introduced toxic explosives into the environment with considerable effects on soil and plant-associated microbiota. Fortunately, these microorganisms, and their collective metabolic activities, can be harnessed for site restoration via in situ phytoremediation. We characterized the bacterial communities inhabiting the bulk soil and rhizosphere of sycamore maple (Acer pseudoplatanus) in two chronically 2,4,6-trinitrotoluene (TNT) polluted soils. Three hundred strains were isolated, purified and characterized, a majority of which showed multiple plant growth promoting (PGP) traits. Several isolates showed high nitroreductase enzyme activity and concurrent TNT-transformation. A 12-member bacterial consortium, comprising selected TNT-detoxifying and rhizobacterial strains, significantly enhanced TNT removal from soil compared to non-inoculated plants, increased root and shoot weight, and the plants were less stressed than the un-inoculated plants as estimated by the responses of antioxidative enzymes. The sycamore maple tree (SYCAM) culture collection is a significant resource of plant-associated strains with multiple PGP and catalytic properties, available for further genetic and phenotypic discovery and use in field applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA