Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(8)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824778

RESUMO

Bovine tuberculosis (TB) in Great Britain adversely affects animal health and welfare and is a cause of considerable economic loss. The situation is exacerbated by European badgers (Meles meles) acting as a wildlife source of recurrent Mycobacterium bovis infection to cattle. Vaccination of badgers against TB is a possible means to reduce and control bovine TB. The delivery of vaccine in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. There are practical limitations over the volume and concentration of Bacillus of Calmette and Guérin (BCG) that can be prepared for inclusion in bait. The production of BCG in a bioreactor may overcome these issues. We evaluated the efficacy of oral, bioreactor-grown BCG against experimental TB in badgers. We demonstrated repeatable protection through the direct administration of at least 2.0 × 108 colony forming units of BCG to the oral cavity, whereas vaccination via voluntary consumption of bait containing the same preparation of BCG did not result in demonstrable protection at the group-level, although a minority of badgers consuming bait showed immunological responses and protection after challenge equivalent to badgers receiving oral vaccine by direct administration. The need to deliver oral BCG in the context of a palatable and environmentally robust bait appears to introduce such variation in BCG delivery to sites of immune induction in the badger as to render experimental studies variable and inconsistent.

2.
J Med Microbiol ; 58(Pt 1): 37-48, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19074651

RESUMO

The prebiotic Bimuno is a mixture containing galactooligosaccharide, produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 41171 in the presence of lactose. Previous studies have implicated prebiotics in reducing infections by enteric pathogens, thus it was hypothesized that Bimuno may confer some protection in the murine host from Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. In this study, infection caused by S. Typhimurium SL1344nal(r) in the presence or absence of Bimuno was assessed using tissue culture assays, a murine ligated ileal gut loop model and a murine oral challenge model. In tissue culture adherence and invasion assays with HT-29-16E cells, the presence of approximately 2 mM Bimuno significantly reduced the invasion of S. Typhimurium SL1344nal(r) (P<0.0001). In the murine ligated ileal gut loops, the presence of Bimuno prevented colonization and the associated pathology of S. Typhimurium. In the BALB/c mouse model, the oral delivery of Bimuno prior to challenge with S. Typhimurium resulted in significant reductions in colonization in the five organs sampled, with highly significant reductions being observed in the spleen at 72 and 96 h post-challenge (P=0.0002, <0.0001, respectively). Collectively, the results indicate that Bimuno significantly reduced the colonization and pathology associated with S. Typhimurium infection in a murine model system, possibly by reducing the invasion of the pathogen into host cells.


Assuntos
Bifidobacterium/enzimologia , Oligossacarídeos/uso terapêutico , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Animais , Fezes/microbiologia , Feminino , Células HT29 , Humanos , Íleo/microbiologia , Íleo/patologia , Íleo/ultraestrutura , Fígado/microbiologia , Camundongos , Baço/microbiologia
3.
FEMS Microbiol Lett ; 283(2): 196-202, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18422621

RESUMO

In this study, we used mouse ileal loops to investigate the interaction of enterohemorrhagic Escherichia coli (EHEC) O157:H7 with the mouse intestinal mucosa. With a dose of 10(9) and 3 h incubation, EHEC O157 was detected in the lumen and to a lesser extent associated with the epithelium. Typical attaching and effacing (A/E) lesions were seen, albeit infrequently. While the effector protein Tir was essential for A/E lesion formation, the bacterial type III secretion system adaptor protein TccP was dispensable. These results suggest that A/E lesions on mouse intestinal mucosa can be formed independently of robust actin polymerization.


Assuntos
Aderência Bacteriana , Escherichia coli O157/fisiologia , Mucosa Intestinal/microbiologia , Animais , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Íleo/microbiologia , Camundongos , Camundongos Endogâmicos ICR , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
4.
Vaccine ; 36(15): 1990-1995, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525277

RESUMO

European badgers (Meles meles) are a wildlife reservoir for Mycobacterium bovis (M. bovis) in parts of England, Wales and Ireland, constituting a potential source of tuberculosis (TB) infection for cattle. Vaccination of badgers against TB is one of the tools available for helping reduce the prevalence of bovine TB in badgers, made possible by the licensing in 2010 of Bacillus Calmette-Guérin (BCG) vaccine for intramuscular administration to badgers (BadgerBCG). However, practical limitations associated with administering an injected vaccine to wild animals make an oral, bait-delivered form of the vaccine highly desirable. Evaluation of the safety of oral BCG to badgers and the environment is a mandatory step on the road to licensing an oral vaccine. This study had the following objectives: (a) to determine whether adverse effects followed the oral administration of BCG vaccine to badgers; (b) to measure the quantity and frequency of BCG excreted in the faeces of vaccinated badgers; and (c) to assess whether there was evidence of the vaccine spreading to unvaccinated, 'sentinel' badgers sharing the same environment as vaccinated animals. We report here that the oral administration per badger of ≥6.4 × 109 cfu BCG, followed 14 days later by a single oral dose of ≥6.4 × 107 cfu BCG caused no adverse physical effects and did not affect the social behaviour and feeding habits of the vaccinated animals. BCG was cultured from the faeces of two of nine vaccinated animals (372 cfu/g and 996 cfu/g, respectively) approximately 48 h after the higher dose of BCG was administered and by one of the nine vaccinated animal (80 cfu/g) approximately 24 h after receiving the lower dose of BCG. We found no evidence for the transmission of BCG to unvaccinated, sentinel, badgers housed with the vaccinated animals despite the occasional excretion of BCG in faeces.


Assuntos
Vacina BCG/efeitos adversos , Vacina BCG/imunologia , Mustelidae/imunologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/prevenção & controle , Administração Oral , Animais , Animais Selvagens , Vacina BCG/administração & dosagem , Temperatura Corporal , Bovinos , Reservatórios de Doenças/microbiologia , Feminino , Imunização , Masculino , Mustelidae/microbiologia , Fatores de Tempo , Tuberculose Bovina/transmissão
5.
Artigo em Inglês | MEDLINE | ID: mdl-28174695

RESUMO

The European badger (Meles meles) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 108 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB or to know whether oral vaccination of wild badgers with BCG will significantly reduce transmission of the disease.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Mustelidae , Mycobacterium bovis/imunologia , Tuberculose/veterinária , Administração Oral , Animais , Relação Dose-Resposta Imunológica , Resultado do Tratamento , Tuberculose/imunologia , Tuberculose/prevenção & controle , Reino Unido
6.
Vaccine ; 29(21): 3782-90, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21440035

RESUMO

Mycobacterium bovis infection is widespread in Eurasian badger (Meles meles) populations in Great Britain and the Republic of Ireland where they act as a wildlife reservoir of infection for cattle. Removal of infected badgers can significantly reduce the incidence of bovine tuberculosis (TB) in local cattle herds. However, control measures based on culling of native wildlife are contentious and may even be detrimental to disease control. Vaccinating badgers with bacillus Calmette-Guerin (BCG) has been shown to be efficacious against experimentally induced TB of badgers when administered subcutaneously and orally. Vaccination may be an alternative or complementary strategy to other disease control measures. As the subcutaneous route is impractical for vaccinating wild badgers and an oral vaccine bait formulation is currently unavailable, we evaluated the intramuscular (IM) route of BCG administration. It has been demonstrated that the IM route is safe in badgers. IM administration has the practical advantage of being relatively easy to perform on trapped wild badgers without recourse to chemical immobilisation. We report the evaluation of the efficacy of IM administration of BCG Danish strain 1331 at two different doses: the dose prescribed for adult humans (2-8×10(5)colony forming units) and a 10-fold higher dose. Vaccination generated a dose-dependent cell-mediated immune response characterised by the production of interferon-γ (IFNγ) and protection against endobronchial challenge with virulent M. bovis. Protection, expressed in terms of a significant reduction in the severity of disease, the number of tissues containing acid-fast bacilli, and reduced bacterial excretion was statistically significant with the higher dose only.


Assuntos
Vacina BCG/administração & dosagem , Reservatórios de Doenças/microbiologia , Mustelidae/microbiologia , Mycobacterium bovis/isolamento & purificação , Tuberculose/veterinária , Animais , Feminino , Imunidade Celular , Injeções Intramusculares/veterinária , Interferon gama/sangue , Interferon gama/imunologia , Masculino , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Tuberculose/patologia , Tuberculose/prevenção & controle , Vacinação/veterinária
7.
J Med Microbiol ; 59(Pt 12): 1428-1439, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20798214

RESUMO

The prebiotic Bimuno(®) is a mixture containing galactooligosaccharides (GOSs), produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 41171 using lactose as the substrate. Previous in vivo and in vitro studies demonstrating the efficacy of Bimuno(®) in reducing Salmonella enterica serovar Typhimurium (S. Typhimurium) colonization did not ascertain whether or not the protective effects could be attributed to the prebiotic component GOS. Here we wished to test the hypothesis that GOS, derived from Bimuno(®), may confer the direct anti-invasive and protective effects of Bimuno(®). In this study the efficacy of Bimuno(®), a basal solution of Bimuno(®) without GOS [which contained glucose, galactose, lactose, maltodextrin and gum arabic in the same relative proportions (w/w) as they are found in Bimuno(®)] and purified GOS to reduce S. Typhimurium adhesion and invasion was assessed using a series of in vitro and in vivo models. The novel use of three dimensionally cultured HT-29-16E cells to study prebiotics in vitro demonstrated that the presence of ∼ 5 mg Bimuno(®) ml(-1) or ∼ 2.5 mg GOS ml(-1) significantly reduced the invasion of S. Typhimurium (SL1344nal(r)) (P<0.0001). Furthermore, ∼ 2.5 mg GOS ml(-1) significantly reduced the adherence of S. Typhimurium (SL1344nal(r)) (P<0.0001). It was demonstrated that cells produced using this system formed multi-layered aggregates of cells that displayed excellent formation of brush borders and tight junctions. In the murine ligated ileal gut loops, the presence of Bimuno(®) or GOS prevented the adherence or invasion of S. Typhimurium to enterocytes, and thus reduced its associated pathology. This protection appeared to correlate with significant reductions in the neutral and acidic mucins detected in goblet cells, possibly as a consequence of stimulating the cells to secrete the mucin into the lumen. In all assays, Bimuno(®) without GOS conferred no such protection, indicating that the basal solution confers no protective effects against S. Typhimurium. Collectively, the studies presented here clearly indicate that the protective effects conferred by Bimuno(®) can be attributed to GOS.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Bifidobacterium/enzimologia , Oligossacarídeos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Animais , Feminino , Células HT29 , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Infecções por Salmonella/microbiologia
8.
Vet Res ; 40(1): 9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18959839

RESUMO

In cattle, the lymphoid rich regions of the rectal-anal mucosa at the terminal rectum are the preferred site for Escherichia coli O157:H7 colonisation. All cattle infected by rectal swab administration demonstrate long-term E. coli O157:H7 colonisation, whereas orally challenged cattle do not demonstrate long-term E. coli O157:H7 colonisation in all animals. Oral, but not rectal challenge of sheep with E. coli O157:H7 has been reported, but an exact site for colonisation in sheep is unknown. To determine if E. coli O157:H7 can effectively colonise the ovine terminal rectum, in vitro organ culture (IVOC) was initiated. Albeit sparsely, large, densely packed E. coli O157:H7 micro-colonies were observed on the mucosa of ovine and control bovine terminal rectum explants. After necropsy of orally inoculated lambs, bacterial enumeration of the proximal and distal gastrointestinal tract did suggest a preference for E. coli O157:H7 colonisation at the ovine terminal rectum, albeit for both lymphoid rich and non-lymphoid sites. As reported for cattle, rectal inoculation studies were then conducted to determine if all lambs would demonstrate persistent colonisation at the terminal rectum. After necropsy of E. coli O157:H7 rectally inoculated lambs, most animals were not colonised at gastrointestinal sites proximal to the rectum, however, large densely packed micro-colonies of E. coli O157:H7 were observed on the ovine terminal rectum mucosa. Nevertheless, at the end point of the study (day 14), only one lamb had E. coli O157:H7 micro-colonies associated with the terminal rectum mucosa. A comparison of E. coli O157:H7 shedding yielded a similar pattern of persistence between rectally and orally inoculated lambs. The inability of E. coli O157:H7 to effectively colonise the terminal rectum mucosa of all rectally inoculated sheep in the long term, suggests that E. coli O157:H7 may colonise this site, but less effectively than reported previously for cattle.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli O157/isolamento & purificação , Mucosa Intestinal/microbiologia , Reto/microbiologia , Doenças dos Ovinos/microbiologia , Criação de Animais Domésticos , Animais , Aderência Bacteriana , Portador Sadio , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Ovinos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA