Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Emerg Infect Dis ; 30(1): 155-158, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147057

RESUMO

After reports in 2017 of Brucella neotomae infections among humans in Costa Rica, we sequenced 12 strains isolated from rodents during 1955-1964 from Utah, USA. We observed an exact strain match between the human isolates and 1 Utah isolate. Independent confirmation is required to clarify B. neotomae zoonotic potential.


Assuntos
Brucella , Brucelose , Humanos , Genômica , Brucella/genética , Brucelose/epidemiologia , Brucelose/veterinária , Costa Rica/epidemiologia
2.
Dis Aquat Organ ; 144: 231-235, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042070

RESUMO

Fatal marine Brucella infections with histologic lesions specific to the central nervous system (CNS), known as neurobrucellosis, have been described in 5 species of odontocete cetaceans in the UK: striped dolphins Stenella coeruleoalba, Atlantic white-sided dolphins Lagenorhynchus acutus, short-beaked common dolphins Delphinus delphis, long-finned pilot whale Globicephala melas and Sowerby's beaked whale Mesoplodon bidens. To date, these CNS lesions have only been associated with Brucella ceti ST26 and not with B. pinnipedialis, which is rarely isolated from cetaceans and, although commonly found in various seal species, has never been associated with any pathology. This paper describes the first report of neurobrucellosis in a common minke whale Balaenoptera acutorostrata which was associated with the isolation of Brucella pinnipedialis ST24 and co-infection with Balaenoptera acutorostrata gamma-herpesvirus 2. This is the first report of neurobrucellosis in any species of mysticete and the first report of Brucella pinnipedialis in association with any pathology in any species of marine mammal, which may be due to co-infection with a herpesvirus, as these are known to be associated with immunosuppression.


Assuntos
Infecções por Herpesviridae , Meningoencefalite , Baleia Anã , Animais , Brucella , Infecções por Herpesviridae/veterinária , Meningoencefalite/veterinária
3.
Dis Aquat Organ ; 145: 191-195, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263734

RESUMO

Brucella ceti has been recovered from a number species of cetaceans worldwide over the last 25 yr. Here we report, for the first time, the recovery of B. ceti from a Risso's dolphin Grampus griseus and a killer whale Orcinus orca. Recovery from an abdominal mass in the dolphin provides further evidence of the systemic pathogenic potential for B. ceti infection in cetaceans. The isolation of B. ceti ST23 (porpoise cluster) from a killer whale from a group known to eat other marine mammals raises the possibility of infection via ingestion. This report takes the number of cetacean species in UK coastal waters from which B. ceti has been isolated to 11 and highlights the value of routine, comprehensive and specific screening for significant pathogens such as Brucella sp. by strandings networks.


Assuntos
Brucella , Caniformia , Toninhas , Orca , Animais
4.
Int J Syst Evol Microbiol ; 70(4): 2611-2615, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32160144

RESUMO

Five strains of an unidentified Gram-positive, catalase-negative, chain-forming coccus-shaped organism recovered from sheep in Scotland were characterized using phenotypic and molecular taxonomic methods. Based on morphological and biochemical criteria, the strains were tentatively identified as streptococci but they did not appear to correspond to any recognised species of the genus. Comparative 16S rRNA gene sequencing showed the strains were highly related to each other and confirmed their placement in the genus Streptococcus, with a maximum nucleotide identity of around 97 % to extant species. Best matches were with Streptococcus hillyeri followed by Streptococcus porci. Average nucleotide identity and in silico DNA-DNA hybridization values determined from whole-genome sequence were also consistent with the group representing a novel species. Best matches, again seen to S. hillyeri, followed by S. porci and S. plurextorum, were below accepted cut-off values for species delineation. Based on biochemical criteria and molecular genetic evidence, it is proposed that the unknown isolates from sheep be assigned to a new species of the genus Streptococcus as Streptococcus caledonicus sp. nov. The type strain of Streptococcus caledonicus is S784/96/1T=CCUG 73951T=NCTC 14363T.


Assuntos
Filogenia , Pleura/microbiologia , Ovinos/microbiologia , Streptococcus/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Escócia , Análise de Sequência de DNA , Streptococcus/isolamento & purificação
5.
Int J Syst Evol Microbiol ; 69(10): 3170-3177, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31395108

RESUMO

Ten strains of an Actinobacillus-like organism were isolated from alpaca (Vicugna pacos) in the UK over a period of 5 years, with no known epidemiological linkages. The isolates are distinct, based on both phenotype and genotype, from any previously described Actinobacillus species. Molecular analysis, based on 16S rRNA, rpoB and infB gene sequences, placed the isolates as a novel, early branching, lineage within the currently recognised Actinobacillus sensu stricto. In agreement with the results of the single-gene analysis, average nucleotide identity values, based on whole genome sequences, showed very similar identities to a number of members of the Actinobacillus sensu stricto notably Actinobacillus equuli, Actinobacillus suis and Actinobacillus ureae. At least two phenotypic characteristics differentiate the alpaca isolates from other Actinobacillus sensu stricto species, and from taxa likely falling within this group but awaiting formal species description, with Actinobacillus anseriformium and A. equulisubsp. haemolyticus being the most closely related phenotypically. The alpaca isolates can be differentiated from A. anseriformium by production of ß-galactosidase (ONPG) and acid from raffinose, and from A. equulisubsp. haemolyticus by production of acid from d-sorbitol and failure to produce acid from d-xylose. Isolates were obtained from multiple sites in alpaca including respiratory tract, alimentary tract and internal organs although further evidence is required to understand any pathogenic significance. Based on the results of characterization described here, it is proposed that the isolates constitute a novel species, Actinobacillus vicugnae sp. nov. The type strain is W1618T (LMG30745T NCTC14090T) isolated in the UK in 2012 from oesophageal ulceration in an alpaca (Vicugna pacos).


Assuntos
Actinobacillus/classificação , Camelídeos Americanos/microbiologia , Filogenia , Actinobacillus/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Feminino , Genes Bacterianos , Masculino , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Reino Unido
6.
BMC Vet Res ; 14(1): 396, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547772

RESUMO

BACKGROUND: Bovine brucellosis is considered as an important disease among livestock and people in sub-Saharan African countries including Ethiopia. A cross-sectional study was conducted from November 2016 to May 2017 to estimate the prevalence and associated risk factors, and to assess knowledge-attitude and practices (KAP) of farm workers about bovine brucellosis in Addis Ababa dairy farms. RESULTS: A total of 1550 cattle from 127 dairy farms were serially tested using the Rose Bengal Plate Test (RBPT), Competitive Enzyme-Linked Immunosorbant Assay (c-ELISA) and Complement Fixation Test (CFT). Forty-three (2.77%) of the collected sera were positive by the RBPT and only one of these was positive by c-ELISA (0.06%) and none was positive by CFT. The knowledge of farm workers towards the disease was very low and risk factors associated with Brucella infection were apparent in the study area. CONCLUSION: Seropositivity for Brucella spp. was found in only a very small percentage by c-ELISA test, although risk factors for transmitting Brucella infection were present. The results suggest that bovine brucellosis is currently not a generalized problem in dairy cattle of Addis Ababa. Since this favorable disease situation is not the result of informed policy, there is no guarantee that it will continue unchanged. Setting clear policy in control of the disease and implementing "One Health" are the most constructive approaches recommended.


Assuntos
Brucelose Bovina/epidemiologia , Técnicas e Procedimentos Diagnósticos/veterinária , Animais , Anticorpos Antibacterianos/sangue , Bovinos , Estudos Transversais , Indústria de Laticínios , Ensaio de Imunoadsorção Enzimática , Etiópia/epidemiologia , Fatores de Risco , Estudos Soroepidemiológicos
7.
Dis Aquat Organ ; 128(1): 13-20, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565250

RESUMO

Brucella species infecting marine mammals was first reported in 1994 and in the years since has been documented in various species of pinnipeds and cetaceans. While these reports have included species that inhabit Arctic waters, the few available studies on bearded seals Erignathus barbatus have failed to detect Brucella infection to date. We report the first isolation of Brucella pinnipedialis from a bearded seal. The isolate was recovered from the mesenteric lymph node of a bearded seal that stranded in Scotland and typed as ST24, a sequence type associated typically with pinnipeds. Furthermore, serological studies of free-ranging bearded seals in their native waters detected antibodies to Brucella in seals from the Chukchi Sea (1990-2011; 19%) and Svalbard (1995-2007; 8%), whereas no antibodies were detected in bearded seals from the Bering Sea or Bering Strait or from captive bearded seals.


Assuntos
Anticorpos Antibacterianos/sangue , Brucella/isolamento & purificação , Brucelose/microbiologia , Focas Verdadeiras/microbiologia , Animais , Masculino , Focas Verdadeiras/sangue
8.
Int J Syst Evol Microbiol ; 66(5): 2090-2098, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928956

RESUMO

Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).


Assuntos
Brucella/classificação , Raposas/microbiologia , Linfonodos/microbiologia , Filogenia , Animais , Áustria , Técnicas de Tipagem Bacteriana , Tipagem de Bacteriófagos , Composição de Bases , Brucella/genética , Brucella/isolamento & purificação , DNA Bacteriano/genética , Análise de Sequência de DNA
9.
J Bacteriol ; 196(5): 920-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24336939

RESUMO

Brucella species include important zoonotic pathogens that have a substantial impact on both agriculture and human health throughout the world. Brucellae are thought of as "stealth pathogens" that escape recognition by the host innate immune response, modulate the acquired immune response, and evade intracellular destruction. We analyzed the genome sequences of members of the family Brucellaceae to assess its evolutionary history from likely free-living soil-based progenitors into highly successful intracellular pathogens. Phylogenetic analysis split the genus into two groups: recently identified and early-dividing "atypical" strains and a highly conserved "classical" core clade containing the major pathogenic species. Lateral gene transfer events brought unique genomic regions into Brucella that differentiated them from Ochrobactrum and allowed the stepwise acquisition of virulence factors that include a type IV secretion system, a perosamine-based O antigen, and systems for sequestering metal ions that are absent in progenitors. Subsequent radiation within the core Brucella resulted in lineages that appear to have evolved within their preferred mammalian hosts, restricting their virulence to become stealth pathogens capable of causing long-term chronic infections.


Assuntos
Evolução Biológica , Brucellaceae/genética , Brucellaceae/patogenicidade , Genoma Bacteriano , Genômica/métodos , Filogenia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Virulência
10.
Appl Environ Microbiol ; 80(5): 1570-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24362435

RESUMO

Brucella taxonomy is perpetually being reshuffled, at both the species and intraspecies levels. Biovar 7 of Brucella abortus was suspended from the Approved Lists of Bacterial Names Brucella classification in 1988, because of unpublished evidence that the reference strain 63/75 was a mixture of B. abortus biovars 3 and 5. To formally clarify the situation, all isolates previously identified as B. abortus bv. 7 in the AHVLA and ANSES strain collections were characterized by classical microbiological and multiple molecular approaches. Among the 14 investigated strains, including strain 63/75, only four strains, isolated in Kenya, Turkey, and Mongolia, were pure and showed a phenotypic profile in agreement with the former biovar 7, particularly agglutination with both anti-A/anti-M monospecific sera. These results were strengthened by molecular strategies. Indeed, genus- and species-specific methods allowed confirmation that the four pure strains belonged to the B. abortus species. The combination of most approaches excluded their affiliation with the recognized biovars (biovars 1 to 6 and 9), while some suggested that they were close to biovar 3.These assays were complemented by phylogenetic and/or epidemiological methods, such as multilocus sequence analysis (MLSA) and variable-number tandem repeat (VNTR) analysis. The results of this polyphasic investigation allow us to propose the reintroduction of biovar 7 into the Brucella classification, with at least three representative strains. Interestingly, the Kenyan strain, sharing the same biovar 7 phenotype, was genetically divergent from other three isolates. These discrepancies illustrate the complexity of Brucella taxonomy. This study suggests that worldwide collections could include strains misidentified as B. abortus bv. 7, and it highlights the need to verify their real taxonomic position.


Assuntos
Brucella abortus/classificação , Tipagem Molecular/métodos , Sorotipagem/métodos , Técnicas de Tipagem Bacteriana , Brucella abortus/genética , Brucella abortus/isolamento & purificação , Brucella abortus/fisiologia
11.
Int J Syst Evol Microbiol ; 64(Pt 12): 4120-4128, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242540

RESUMO

Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T)).


Assuntos
Brucella/classificação , Papio/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Brucella/genética , Brucella/isolamento & purificação , DNA Bacteriano/genética , Feminino , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Front Microbiol ; 14: 1128966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213520

RESUMO

Brucellosis remains one of the most significant zoonotic diseases globally, responsible for both considerable human morbidity and economic losses due to its impacts on livestock productivity. Despite this, there remain significant evidence gaps in many low- and middle-income countries, including those of sub-Saharan Africa. Here we report the first molecular characterisation of Brucella sp. from Ethiopia. Fifteen Brucella sp. isolates from an outbreak in cattle from a herd in central Ethiopia were identified as Brucella abortus, using bacterial culture and molecular methods. Sequencing of the Ethiopian B. abortus isolates allowed their phylogenetic comparison with 411 B. abortus strains of diverse geographical origins, using whole genome single nucleotide polymorphisms (wgSNP). The Ethiopian isolates belonged to an early-branching lineage (Lineage A) previously only represented by data from two strains, both of sub-Saharan African origin (Kenya and Mozambique). A second B. abortus lineage (Lineage B), also comprised solely of strains originating from sub-Saharan Africa, was identified. The majority of strains belonged to one of two lineages of strains originating from a much broader geographical range. Further analyses based on multi-locus sequence typing (MLST) and multi-locus variable-number tandem repeat analysis (MLVA) expanded the number of B. abortus strains available for comparison with the Ethiopian isolates and were consistent with the findings from wgSNP analysis. MLST profiles of the Ethiopian isolates expanded the sequence type (ST) diversity of the early branching lineage of B. abortus, equivalent to wgSNP Lineage A. A more diverse cluster of STs, equivalent to wgSNP Lineage B, was comprised solely of strains originating from sub-Saharan Africa. Similarly, analysis of B. abortus MLVA profiles (n = 1891) confirmed that the Ethiopian isolates formed a unique cluster, similar to only two existing strains, and distinct from the majority of other strains of sub-Saharan African origin. These findings expand the known diversity of an under-represented lineage of B. abortus and suggest a potential evolutionary origin for the species in East Africa. In addition to providing information concerning Brucella species extant within Ethiopia this work serves as the basis for further studies on the global population structure and evolutionary history of a major zoonotic pathogen.

13.
J Comp Pathol ; 203: 31-35, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37244160

RESUMO

The Greenland shark (Somniosus microcephalus) is a large species of shark found in the North Atlantic and Arctic Oceans and is believed to be the longest living vertebrate. Relatively little is known about its biology, abundance, health or diseases. In March 2022, only the third reported UK stranding of this species occurred and it was the first to undergo post-mortem examination. The animal was a sexually immature female, measuring 3.96 m in length and 285 kg in weight, and was in poor nutritional state. Gross findings included haemorrhages in the skin and soft tissues, particularly of the head, and silt in the stomach suggestive of live stranding, bilateral corneal opacity, slightly turbid cerebrospinal fluid (CSF) and patchy congestion of the brain. Histopathological findings included keratitis and anterior uveitis, fibrinonecrotic and lymphohistiocytic meningitis of the brain and proximal spinal cord and fibrinonecrotizing choroid plexitis. A near pure growth of a Vibrio organism was isolated from CSF. This is believed to be the first report of meningitis in this species.


Assuntos
Monitoramento Ambiental , Tubarões , Animais , Feminino , Regiões Árticas
14.
Front Microbiol ; 14: 1287046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094632

RESUMO

Brucella abortus is a globally important zoonotic pathogen largely found in cattle hosts and is typically transmitted to humans through contaminated dairy products or contact with diseased animals. Despite the long, shared history of cattle and humans, little is known about how trade in cattle has spread this pathogen throughout the world. Whole genome sequencing provides unparalleled resolution to investigate the global evolutionary history of a bacterium such as B. abortus by providing phylogenetic resolution that has been unobtainable using other methods. We report on large-scale genome sequencing and analysis of B. abortus collected globally from cattle and 16 other hosts from 52 countries. We used single nucleotide polymorphisms (SNPs) to identify genetic variation in 1,074 B. abortus genomes and using maximum parsimony generated a phylogeny that identified four major clades. Two of these clades, clade A (median date 972 CE; 95% HPD, 781-1142 CE) and clade B (median date 150 BCE; 95% HPD, 515 BCE-164 CE), were exceptionally diverse for this species and are exclusively of African origin where provenance is known. The third clade, clade C (median date 949 CE; 95% HPD, 766-1102 CE), had most isolates coming from a broad swath of the Middle East, Europe, and Asia, also had relatively high diversity. Finally, the fourth major clade, clade D (median date 1467 CE; 95% HPD, 1367-1553 CE) comprises the large majority of genomes in a dominant but relatively monomorphic group that predominantly infects cattle in Europe and the Americas. These data are consistent with an African origin for B. abortus and a subsequent spread to the Middle East, Europe, and Asia, probably through the movement of infected cattle. We hypothesize that European arrival to the Americas starting in the 15th century introduced B. abortus from Western Europe through the introduction of a few common cattle breeds infected with strains from clade D. These data provide the foundation of a comprehensive global phylogeny of this important zoonotic pathogen that should be an important resource in human and veterinary epidemiology.

15.
Appl Environ Microbiol ; 78(10): 3753-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407680

RESUMO

Bacterial isolates from frogs were phenotypically identified as Ochrobactrum anthropi, but 16S rRNA sequencing showed up to 100% identity with Brucella inopinata. Further analysis of recA, omp2a, omp2b, bcsp31, and IS711 and multilocus sequence analysis (MLSA) verified a close relationship with Brucella, suggesting the isolates may actually represent novel members of this growing genus of zoonotic pathogens.


Assuntos
Anuros/microbiologia , Brucella/classificação , Brucella/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Brucella/genética , Brucella/fisiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Appl Environ Microbiol ; 78(5): 1534-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210211

RESUMO

Brucellosis is one of the major bacterial zoonoses worldwide. In the past decade, an increasing number of atypical Brucella strains and species have been described. Brucella microti in particular has attracted attention, because this species not only infects mammalian hosts but also persists in soil. An environmental reservoir may pose a new public health risk, leading to the reemergence of brucellosis. In a polyphasic approach, comprising conventional microbiological techniques and extensive biochemical and molecular techniques, all currently available Brucella microti strains were characterized. While differing in their natural habitats and host preferences, B. microti isolates were found to possess identical 16S rRNA, recA, omp2a, and omp2b gene sequences and identical multilocus sequence analysis (MLSA) profiles at 21 different genomic loci. Only highly variable microsatellite markers of multiple-locus variable-number tandem repeat (VNTR) analysis comprising 16 loci (MLVA-16) showed intraspecies discriminatory power. In contrast, biotyping demonstrated striking differences within the genetically homologous species. The majority of the mammalian isolates agglutinated only with monospecific anti-M serum, whereas soil isolates agglutinated with anti-A, anti-M, and anti-R sera. Bacteria isolated from animal sources were lysed by phages F1, F25, Tb, BK2, Iz, and Wb, whereas soil isolates usually were not. Rough strains of environmental origin were lysed only by phage R/C. B. microti exhibited high metabolic activities similar to those of closely related soil organisms, such as Ochrobactrum spp. Each strain was tested with 93 different substrates and showed an individual metabolic profile. In summary, the adaptation of Brucella microti to a specific habitat or host seems to be a matter of gene regulation rather than a matter of gene configuration.


Assuntos
Biodiversidade , Brucella/classificação , Animais , Técnicas de Tipagem Bacteriana , Bacteriólise , Bacteriófagos/crescimento & desenvolvimento , Brucella/genética , Brucella/isolamento & purificação , Brucella/fisiologia , Brucelose/microbiologia , Brucelose/veterinária , Genes Bacterianos , Genótipo , Mamíferos/microbiologia , Tipagem de Sequências Multilocus , Fenótipo , Análise de Sequência de DNA , Microbiologia do Solo
17.
Acta Trop ; 229: 106363, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149040

RESUMO

Brucellosis is an endemic infection in Iran and represents a serious health problem in humans and livestock causing important economic losses. The objective of this study was to undertake molecular characterization of Brucella spp. isolated from humans and livestock in several provinces of Iran including by multi-locus sequence typing (MLST), in order to understand the genotypes circulating in Iran and their relationship to genotypes globally. A total of 23 Brucella isolates were isolated from eight milk samples (seven cows, and one camel), human blood samples (seven), bovine lymph nodes (two), and samples from aborted fetuses (three sheep, two cows, and one goat). Phenotypic and molecular identification of Brucella isolates was performed on all isolated bacteria and showed that all were either Brucella melitensis or Brucella abortus. B. melitensis was associated with ovine/caprine and camel samples, most human isolates, and a significant minority of cattle isolates. In contrast B. abortus from livestock was associated only with isolations from bovine samples, as well as a single human sample. These results indicate that both B. melitensis and B. abortus contribute to the human brucellosis burden in Iran. B. melitensis isolates comprised three MLST-9 genotypes, the common and globally distributed ST8, a single representative of ST7, and several additional examples of ST102, a genotype previously only reported in a single isolate from a human brucellosis case believed to be acquired through travel to Iran. B. abortus isolates represented two globally common MLST-9 genotypes (ST1 and ST2), with relationships to biotype and other PCR-based typing methods consistent with previous observations. The results provide the basis for further studies examining the molecular epidemiology of Brucella circulating in Iran and the relationships of local isolates to those present globally.


Assuntos
Brucella melitensis , Brucelose , Animais , Brucella abortus/genética , Brucella melitensis/genética , Brucelose/epidemiologia , Brucelose/microbiologia , Brucelose/veterinária , Bovinos , Feminino , Genótipo , Cabras , Humanos , Irã (Geográfico)/epidemiologia , Tipagem de Sequências Multilocus , Ovinos
18.
J Clin Microbiol ; 49(11): 3954-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21880970

RESUMO

We report a novel IS711 chromosomal location that is specific for the Brucella genotype ST27 previously associated with Pacific marine mammals and human zoonotic infection in New Zealand and Peru. Our data support the previous observation that this peculiar genotype is distinct from those commonly isolated from the Atlantic and currently classified within the species B. ceti and B. pinnipedialis.


Assuntos
Brucella/classificação , Brucella/genética , Brucelose/veterinária , Cromossomos Bacterianos , Elementos de DNA Transponíveis , Mamíferos/microbiologia , Zoonoses/microbiologia , Animais , Brucella/isolamento & purificação , Brucelose/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Dados de Sequência Molecular , Nova Zelândia , Peru , Análise de Sequência de DNA
19.
Appl Environ Microbiol ; 77(18): 6674-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21803907

RESUMO

Among the numerous molecular methods described during the last 20 years to identify Brucella, multiplexed amplification methods offer the cheapest and simplest technical solution for molecular identification. However, one disadvantage of such methods is their need to undergo technical revalidation each time a new marker is added to the system. Moreover, polymorphic markers cannot be assessed at the single-nucleotide level in these assays. Since new Brucella species are continuously being described, open methodologies able to accommodate new markers while preserving all other system parameters have an obvious advantage. We present a ligase chain reaction (LCR)-based method that simultaneously assesses multiple genetic markers at the single-nucleotide level. Most of the selected markers originate from a multilocus sequence typing (MLST) database that has been extensively validated on hundreds of different Brucella strains. When assayed on both reference and field strains, the method yields characteristic capillary electrophoresis profiles for each of the 10 Brucella species described to date and displays discriminatory potential below the species level for some. Since the LCR methodology is insensitive to interference resulting from the use of multiple oligonucleotides in a single mixture, the way is open for smooth future updates of the proposed system. Such updates are inevitable, given the pending description of new Brucella species.


Assuntos
Técnicas Bacteriológicas/métodos , Brucella/classificação , Brucella/genética , Reação em Cadeia da Ligase/métodos , Polimorfismo Genético , Brucella/isolamento & purificação , DNA Bacteriano/genética , Eletroforese Capilar/métodos , Marcadores Genéticos
20.
Infect Genet Evol ; 92: 104865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872784

RESUMO

Remarkable genetic diversity and breadth of host species has been uncovered in the Brucella genus over the past decade, fundamentally changing our concept of what it means to be a Brucella. From ocean fishes and marine mammals, to pond dwelling amphibians, forest foxes, desert rodents, and cave-dwelling bats, Brucella have revealed a variety of previously unknown niches. Classical microbiological techniques have been able to help us classify many of these new strains but at times have limited our ability to see the true relationships among or within species. The closest relatives of Brucella are soil bacteria and the adaptations of Brucella spp. to live intracellularly suggest that the genus has evolved to live in vertebrate hosts. Several recently discovered species appear to have phenotypes that are intermediate between soil bacteria and core Brucella, suggesting that they may represent ancestral traits that were subsequently lost in the traditional species. Remarkably, the broad relationships among Brucella species using a variety of sequence and fragment-based approaches have been upheld when using comparative genomics with whole genomes. Nonetheless, genomes are required for fine-scale resolution of many of the relationships and for understanding the evolutionary history of the genus. We expect that the coming decades will reveal many more hosts and previously unknown diversity in a wide range of environments.


Assuntos
Brucella/genética , Variação Genética , Genoma Bacteriano , Animais , Evolução Biológica , Brucella/classificação , Genômica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA