Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 506(7489): 451-5, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24553141

RESUMO

Members of the nuclear factor-κB (NF-κB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-κB signalling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-κB activity in cancer. Here we show that more than two-thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-κB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-κB target genes, and rapidly transformed neural stem cells--the cell of origin of ependymoma--to form these tumours in mice. Our data identify a highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.


Assuntos
Transformação Celular Neoplásica , Ependimoma/genética , Ependimoma/metabolismo , NF-kappa B/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Cromossomos Humanos Par 11/genética , Ependimoma/patologia , Feminino , Humanos , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , NF-kappa B/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição , Translocação Genética/genética , Proteínas de Sinalização YAP
2.
Nature ; 466(7306): 632-6, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20639864

RESUMO

Understanding the biology that underlies histologically similar but molecularly distinct subgroups of cancer has proven difficult because their defining genetic alterations are often numerous, and the cellular origins of most cancers remain unknown. We sought to decipher this heterogeneity by integrating matched genetic alterations and candidate cells of origin to generate accurate disease models. First, we identified subgroups of human ependymoma, a form of neural tumour that arises throughout the central nervous system (CNS). Subgroup-specific alterations included amplifications and homozygous deletions of genes not yet implicated in ependymoma. To select cellular compartments most likely to give rise to subgroups of ependymoma, we matched the transcriptomes of human tumours to those of mouse neural stem cells (NSCs), isolated from different regions of the CNS at different developmental stages, with an intact or deleted Ink4a/Arf locus (that encodes Cdkn2a and b). The transcriptome of human supratentorial ependymomas with amplified EPHB2 and deleted INK4A/ARF matched only that of embryonic cerebral Ink4a/Arf(-/-) NSCs. Notably, activation of Ephb2 signalling in these, but not other, NSCs generated the first mouse model of ependymoma, which is highly penetrant and accurately models the histology and transcriptome of one subgroup of human supratentorial tumour. Further, comparative analysis of matched mouse and human tumours revealed selective deregulation in the expression and copy number of genes that control synaptogenesis, pinpointing disruption of this pathway as a critical event in the production of this ependymoma subgroup. Our data demonstrate the power of cross-species genomics to meticulously match subgroup-specific driver mutations with cellular compartments to model and interrogate cancer subgroups.


Assuntos
Compartimento Celular , Modelos Animais de Doenças , Ependimoma/genética , Ependimoma/patologia , Genômica , Mutação/genética , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Ependimoma/classificação , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes p16 , Humanos , Camundongos , Modelos Biológicos , Polimorfismo de Nucleotídeo Único/genética , Receptor EphB2/genética , Receptor EphB2/metabolismo , Especificidade da Espécie , Células-Tronco/citologia , Células-Tronco/metabolismo , Sinapses/metabolismo
3.
Nat Genet ; 47(8): 878-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26075792

RESUMO

Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models, we validate eight new ependymoma oncogenes and ten new ependymoma TSGs that converge on a small number of cell functions, including vesicle trafficking, DNA modification and cholesterol biosynthesis, identifying these as potential new therapeutic targets.


Assuntos
Ependimoma/genética , Genes Supressores de Tumor , Predisposição Genética para Doença/genética , Oncogenes/genética , Animais , Células Cultivadas , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Ependimoma/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Nus , Camundongos Transgênicos , Microscopia Confocal , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
4.
Development ; 135(11): 1903-11, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18469221

RESUMO

Myc-deficient mice fail to develop normal vascular networks and Myc-deficient embryonic stem cells fail to provoke a tumor angiogenic response when injected into immune compromised mice. However, the molecular underpinnings of these defects are poorly understood. To assess whether Myc indeed contributes to embryonic vasculogenesis we evaluated Myc function in Xenopus laevis embryogenesis. Here, we report that Xc-Myc is required for the normal assembly of endothelial cells into patent vessels during both angiogenesis and lymphangiogenesis. Accordingly, the specific knockdown of Xc-Myc provokes massive embryonic edema and hemorrhage. Conversely, Xc-Myc overexpression triggers the formation of ectopic vascular beds in embryos. Myc is required for normal expression of Slug/Snail2 and Twist, and either XSlug/Snail2 or XTwist could compensate for defects manifest by Xc-Myc knockdown. Importantly, knockdown of Xc-Myc, XSlug/Snail2 or XTwist within the lateral plate mesoderm, but not the neural crest, provoked embryonic edema and hemorrhage. Collectively, these findings support a model in which Myc, Twist and Slug/Snail2 function in a regulatory circuit within lateral plate mesoderm that directs normal vessel formation in both the vascular and lymphatic systems.


Assuntos
Neovascularização Fisiológica/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Proteína 1 Relacionada a Twist/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/fisiologia , Animais , Western Blotting , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Linfangiogênese/genética , Linfangiogênese/fisiologia , Neovascularização Fisiológica/genética , Crista Neural/embriologia , Crista Neural/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
5.
Genes Dev ; 16(19): 2530-43, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12368264

RESUMO

c-Myc promotes cell growth and transformation by ill-defined mechanisms. c-myc(-/-) mice die by embryonic day 10.5 (E10.5) with defects in growth and in cardiac and neural development. Here we report that the lethality of c-myc(-/-) embryos is also associated with profound defects in vasculogenesis and primitive erythropoiesis. Furthermore, c-myc(-/-) embryonic stem (ES) and yolk sac cells are compromised in their differentiative and growth potential. These defects are intrinsic to c-Myc, and are in part associated with a requirement for c-Myc for the expression of vascular endothelial growth factor (VEGF), as VEGF can partially rescue these defects. However, c-Myc is also required for the proper expression of other angiogenic factors in ES and yolk sac cells, including angiopoietin-2, and the angiogenic inhibitors thrombospondin-1 and angiopoietin-1. Finally, c-myc(-/-) ES cells are dramatically impaired in their ability to form tumors in immune-compromised mice, and the small tumors that sometimes develop are poorly vascularized. Therefore, c-Myc function is also necessary for the angiogenic switch that is indispensable for the progression and metastasis of tumors. These findings support the model wherein c-Myc promotes cell growth and transformation, as well as vascular and hematopoietic development, by functioning as a master regulator of angiogenic factors.


Assuntos
Neovascularização Fisiológica/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Angiopoietina-1 , Angiopoietina-2 , Animais , Diferenciação Celular , Linhagem Celular , Fatores de Crescimento Endotelial/biossíntese , Eritropoese/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Linfocinas/biossíntese , Masculino , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Knockout , Camundongos SCID , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Trombospondina 1/biossíntese , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA