Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Mol Breed ; 43(7): 53, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37333997

RESUMO

Oilseed rape (Brassica napus L.; B. napus) is an important oil crop worldwide. However, the genetic mechanisms of B. napus adaptations to low phosphate (P) stress are largely unknown. In this study, a genome-wide association study (GWAS) identified 68 SNPs significantly associated with seed yield (SY) under low P (LP) availability, and 7 SNPs significantly associated with phosphorus efficiency coefficient (PEC) in two trials. Among these SNPs, two, chrC07__39807169 and chrC09__14194798, were co-detected in two trials, and BnaC07.ARF9 and BnaC09.PHT1;2 were identified as candidate genes of them, respectively, by combining GWAS with quantitative reverse-transcription PCR (qRT-PCR). There were significant differences in the gene expression level of BnaC07.ARF9 and BnaC09.PHT1;2 between P-efficient and -inefficiency varieties at LP. SY_LP had a significant positive correlation with the gene expression level of both BnaC07.ARF9 and BnaC09.PHT1;2. BnaC07.ARF9 and BnaA01.PHR1 could directly bind the promoters of BnaA01.PHR1 and BnaC09.PHT1;2, respectively. Selective sweep analysis was conducted between ancient and derived B. napus, and detected 1280 putative selective signals. Within the selected region, a large number of genes related to P uptake, transport, and utilization were detected, such as purple acid phosphatase (PAP) family genes and phosphate transporter (PHT) family genes. These findings provide novel insights into the molecular targets for breeding P efficiency varieties in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01399-9.

2.
New Phytol ; 233(4): 1620-1635, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761404

RESUMO

The concept of a root economics space (RES) is increasingly adopted to explore root trait variation and belowground resource-acquisition strategies. Much progress has been made on interactions of root morphology and mycorrhizal symbioses. However, root exudation, with a significant carbon (C) cost (c. 5-21% of total photosynthetically fixed C) to enhance resource acquisition, remains a missing link in this RES. Here, we argue that incorporating root exudation into the structure of RES is key to a holistic understanding of soil nutrient acquisition. We highlight the different functional roles of root exudates in soil phosphorus (P) and nitrogen (N) acquisition. Thereafter, we synthesize emerging evidence that illustrates how root exudation interacts with root morphology and mycorrhizal symbioses at the level of species and individual plant and argue contrasting patterns in species evolved in P-impoverished vs N-limited environments. Finally, we propose a new conceptual framework, integrating three groups of root functional traits to better capture the complexity of belowground resource-acquisition strategies. Such a deeper understanding of the integrated and dynamic interactions of root morphology, root exudation, and mycorrhizal symbioses will provide valuable insights into the mechanisms underlying species coexistence and how to explore belowground interactions for sustainable managed systems.


Assuntos
Micorrizas , Raízes de Plantas , Nitrogênio , Raízes de Plantas/anatomia & histologia , Solo/química , Microbiologia do Solo
3.
Plant Physiol ; 186(3): 1616-1631, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831190

RESUMO

Magnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.sgn3.a-1, which accumulates twice as much Mg and a third more Ca in its leaves. We mapped braA.sgn3.a to a single recessive locus using a forward ionomic screen of chemically mutagenized lines with subsequent backcrossing and linked-read sequencing of second back-crossed, second filial generation (BC2F2) segregants. Confocal imaging revealed a disrupted root endodermal diffusion barrier, consistent with SGN3 encoding a receptor-like kinase required for normal formation of Casparian strips, as reported in thale cress (Arabidopsis thaliana). Analysis of the spatial distribution of elements showed elevated extracellular Mg concentrations in leaves of braA.sgn3.a-1, hypothesized to result from preferential export of excessive Mg from cells to ensure suitable cellular concentrations. This work confirms a conserved role of SGN3 in controlling nutrient homeostasis in B. rapa, and reveals mechanisms by which plants are able to deal with perturbed shoot element concentrations resulting from a "leaky" root endodermal barrier. Characterization of variation in leaf Mg and Ca accumulation across a mutagenized population of B. rapa shows promise for using such populations in breeding programs to increase edible concentrations of essential human and animal nutrients.


Assuntos
Brassica rapa/genética , Brassica rapa/metabolismo , Cálcio/análise , Cálcio/metabolismo , Genes Recessivos , Magnésio/análise , Magnésio/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo
4.
Plant Cell Environ ; 45(11): 3338-3353, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986580

RESUMO

Recent progress has shown that vacuolar Pi transporters (VPTs) are important for cellular Pi homoeostasis in Arabidopsis thaliana and Oryza sativa under fluctuating external Pi supply, but the identity and involvement of VPTs in cellular Pi homoeostasis in Brassica napus is poorly understood. Here, we identified two vacuolar Pi influx transporters B. napus, BnA09PHT5;1b and BnCnPHT5;1b, and uncovered their necessity for cellular Pi homoeostasis through functional analysis. Both Brassica proteins are homologs of Arabidopsis AtPHT5;1 with a similar sequence, structure, tonoplast localization, and VPT activity. Brassica pht5;1b double mutants had smaller shoots and larger shoot cellular Pi concentrations than wild-type B. napus, which contrasts with a previous study of the Arabidopsis pht5;1 mutant, suggesting that PHT5;1-VPTs play different roles in cellular Pi homoeostasis in seedlings of B. napus and A. thaliana. Disruption of BnPHT5;1b genes also caused Pi toxicity in floral organs, reduced seed yield and impacted seed traits, consistent with the proposed role of AtPHT5;1 in floral Pi homoeostasis in Arabidopsis. Taken together, our studies identified two vacuolar Pi influx transporters in B. napus and revealed the distinct and conserved roles of BnPHT5;1bs in cellular Pi homoeostasis in this plant species.


Assuntos
Arabidopsis , Brassica napus , Brassica , Arabidopsis/metabolismo , Brassica/genética , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo
5.
J Exp Bot ; 73(14): 4753-4777, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35511123

RESUMO

Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.


Assuntos
Brassica napus , Ácido Abscísico/metabolismo , Aclimatação , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Ann Bot ; 129(3): 247-258, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34864840

RESUMO

BACKGROUND: Limitation of plant productivity by phosphorus (P) supply is widespread and will probably increase in the future. Relatively large amounts of P fertilizer are applied to sustain crop growth and development and to achieve high yields. However, with increasing P application, plant P efficiency generally declines, which results in greater losses of P to the environment with detrimental consequences for ecosystems. SCOPE: A strategy for reducing P input and environmental losses while maintaining or increasing plant performance is the development of crops that take up P effectively from the soil (P acquisition efficiency) or promote productivity per unit of P taken up (P utilization efficiency). In this review, we describe current research on P metabolism and transport and its relevance for improving P utilization efficiency. CONCLUSIONS: Enhanced P utilization efficiency can be achieved by optimal partitioning of cellular P and distributing P effectively between tissues, allowing maximum growth and biomass of harvestable plant parts. Knowledge of the mechanisms involved could help design and breed crops with greater P utilization efficiency.


Assuntos
Ecossistema , Fósforo , Produtos Agrícolas/metabolismo , Fertilizantes , Fósforo/metabolismo , Solo
7.
Ann Bot ; 129(1): 65-78, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34605859

RESUMO

BACKGROUND AND AIMS: Some Caryophyllales species accumulate abnormally large shoot sodium (Na) concentrations in non-saline environments. It is not known whether this is a consequence of altered Na partitioning between roots and shoots. This paper tests the hypotheses (1) that Na concentrations in shoots ([Na]shoot) and in roots ([Na]root) are positively correlated among Caryophyllales, and (2) that shoot Na hyperaccumulation is correlated with [Na]shoot/[Na]root quotients. METHODS: Fifty two genotypes, representing 45 Caryophyllales species and 4 species from other angiosperm orders, were grown hydroponically in a non-saline, complete nutrient solution. Concentrations of Na in shoots and in roots were determined using inductively coupled plasma mass spectrometry (ICP-MS). KEY RESULTS: Sodium concentrations in shoots and roots were not correlated among Caryophyllales species with normal [Na]shoot, but were positively correlated among Caryophyllales species with abnormally large [Na]shoot. In addition, Caryophyllales species with abnormally large [Na]shoot had greater [Na]shoot/[Na]root than Caryophyllales species with normal [Na]shoot. CONCLUSIONS: Sodium hyperaccumulators in the Caryophyllales are characterized by abnormally large [Na]shoot, a positive correlation between [Na]shoot and [Na]root, and [Na]shoot/[Na]root quotients greater than unity.


Assuntos
Caryophyllales , Magnoliopsida , Magnoliopsida/genética , Raízes de Plantas/química , Brotos de Planta/genética , Sódio
8.
Genomics ; 113(2): 755-768, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516850

RESUMO

Breeding crops that acquire and/or utilize potassium (K) more effectively could reduce the use of K fertilizers. Sixteen traits affecting K use efficiency (KUE) at the seedling stage were investigated in a B. napus double haploid population grown at an optimal K supply (OK) and a low K supply (LK) in a hydroponic culture system. In total, 50 and 62 QTLs associated with these traits were identified at OK and LK, respectively. A total of 25 orthologues of 23 Arabidopsis genes regulating K transport were identified in the confidence intervals of nine QTLs impacting shoot dry weight at LK, and 22 of these showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in roots at LK between the two parental lines. This study provided insights to the genetic basis of KUE in B. napus, which will accelerate the breeding of K-efficient rapeseed cultivars by marker-assisted selection.


Assuntos
Brassica napus/genética , Polimorfismo de Nucleotídeo Único , Potássio/metabolismo , Locos de Características Quantitativas , Brassica napus/metabolismo , Mutação INDEL , Transporte de Íons , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
New Phytol ; 229(6): 3318-3329, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33259640

RESUMO

In their natural environment along coast lines, date palms are exposed to seawater inundation and, hence, combined stress by salinity and flooding. To elucidate the consequences of this combined stress on foliar gas exchange and metabolite abundances in leaves and roots, date palm seedlings were exposed to flooding with seawater and its major constituents under controlled conditions. Seawater flooding significantly reduced CO2 assimilation, transpiration and stomatal conductance, but did not affect isoprene emission. A similar effect was observed upon NaCl exposure. By contrast, flooding with distilled water or MgSO4 did not affect CO2 /H2 O gas exchange or stomatal conductance significantly, indicating that neither flooding itself, nor seawater sulfate, contributed greatly to stomatal closure. Seawater exposure increased Na and Cl contents in leaves and roots, but did not affect sulfate contents significantly. Metabolite analyses revealed reduced abundances of foliar compatible solutes, such as sugars and sugar alcohols, whereas nitrogen compounds accumulated in roots. Reduced transpiration upon seawater exposure may contribute to controlling the movement of toxic ions to leaves and, therefore, can be seen as a mechanism to cope with salinity. The present results indicate that date palm seedlings are tolerant towards seawater exposure to some extent, and highly tolerant to flooding.


Assuntos
Phoeniceae , Plântula , Folhas de Planta , Raízes de Plantas , Salinidade , Água do Mar , Estresse Fisiológico
10.
BMC Plant Biol ; 20(1): 368, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758143

RESUMO

BACKGROUND: Phosphorus (P) deficiency limits crop production worldwide. Crops differ in their ability to acquire and utilise the P available. The aim of this study was to determine root traits (root exudates, root system architecture (RSA), tissue-specific allocation of P, and gene expression in roots) that (a) play a role in P-use efficiency and (b) contribute to large shoot zinc (Zn) concentration in Brassica oleracea. RESULTS: Two B. oleracea accessions (var. sabellica C6, a kale, and var. italica F103, a broccoli) were grown in a hydroponic system or in a high-throughput-root phenotyping (HTRP) system where they received Low P (0.025 mM) or High P (0.25 mM) supply for 2 weeks. In hydroponics, root and shoot P and Zn concentrations were measured, root exudates were profiled using both Fourier-Transform-Infrared spectroscopy and gas-chromatography-mass spectrometry and previously published RNAseq data from roots was re-examined. In HTRP experiments, RSA (main and lateral root number and lateral root length) was assessed and the tissue-specific distribution of P was determined using micro-particle-induced-X-ray emission. The C6 accession had greater root and shoot biomass than the F103 accession, but the latter had a larger shoot P concentration than the C6 accession, regardless of the P supply in the hydroponic system. The F103 accession had a larger shoot Zn concentration than the C6 accession in the High P treatment. Although the F103 accession had a larger number of lateral roots, which were also longer than in the C6 accession, the C6 accession released a larger quantity and number of polar compounds than the F103 accession. A larger number of P-responsive genes were found in the Low P treatment in roots of the F103 accession than in roots of the C6 accession. Expression of genes linked with "phosphate starvation" was up-regulated, while those linked with iron homeostasis were down-regulated in the Low P treatment. CONCLUSIONS: The results illustrate large within-species variability in root acclimatory responses to P supply in the composition of root exudates, RSA and gene expression, but not in P distribution in root cross sections, enabling P sufficiency in the two B. oleracea accessions studied.


Assuntos
Brassica/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Hidroponia , Metaboloma , Brotos de Planta
11.
Ann Bot ; 125(1): 119-130, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31560368

RESUMO

BACKGROUND AND AIMS: Roots take up phosphorus (P) as inorganic phosphate (Pi). Enhanced root proliferation in Pi-rich patches enables plants to capture the unevenly distributed Pi, but the underlying control of root proliferation remains largely unknown. Here, the role of auxin in this response was investigated in maize (Zea mays). METHODS: A split-root, hydroponics system was employed to investigate root responses to Pi supply, with one (heterogeneous) or both (homogeneous) sides receiving 0 or 500 µm Pi. KEY RESULTS: Maize roots proliferated in Pi-rich media, particularly with heterogeneous Pi supply. The second-order lateral root number was 3-fold greater in roots of plants receiving a heterogeneous Pi supply than in roots of plants with a homogeneous Pi supply. Root proliferation in a heterogeneous Pi supply was inhibited by the auxin transporter inhibitor 1-N-naphthylphthalamic acid (NPA). The proliferation of lateral roots was accompanied by an enhanced auxin response in the apical meristem and vascular tissues at the root tip, as demonstrated in a DR5::RFP marker line. CONCLUSIONS: It is concluded that the response of maize root morphology to a heterogeneous Pi supply is modulated by local signals of Pi availability and systemic signals of plant P nutritional status, and is mediated by auxin redistribution.


Assuntos
Ácidos Indolacéticos , Zea mays , Proliferação de Células , Fosfatos , Raízes de Plantas
12.
Ann Bot ; 126(1): 119-140, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32221530

RESUMO

BACKGROUND AND AIMS: Mineral elements have many essential and beneficial functions in plants. Phosphorus (P) deficiency can result in changes in the ionomes of plant organs. The aims of this study were to characterize the effects of P supply on the ionomes of shoots and roots, and to identify chromosomal quantitative trait loci (QTLs) for shoot and root ionomic traits, as well as those affecting the partitioning of mineral elements between shoot and root in Brassica napus grown with contrasting P supplies. METHODS: Shoot and root concentrations of 11 mineral elements (B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES) in a Brassica napus double haploid population grown at an optimal (OP) and a low phosphorus supply (LP) in an agar system. Shoot, root and plant contents, and the partitioning of mineral elements between shoot and root were calculated. KEY RESULTS: The tissue concentrations of B, Ca, Cu, K, Mg, Mn, Na, P and Zn were reduced by P starvation, while the concentration of Fe was increased by P starvation in the BnaTNDH population. A total of 133 and 123 QTLs for shoot and root ionomic traits were identified at OP and LP, respectively. A major QTL cluster on chromosome C07 had a significant effect on shoot Mg and S concentrations at LP and was narrowed down to a 2.1 Mb region using an advanced backcross population. CONCLUSIONS: The tissue concentration and partitioning of each mineral element was affected differently by P starvation. There was a significant difference in mineral element composition between shoots and roots. Identification of the genes underlying these QTLs will enhance our understanding of processes affecting the uptake and partitioning of mineral elements in Brassica napus.


Assuntos
Brassica napus/genética , Fenótipo , Fosfatos , Fósforo , Raízes de Plantas/genética , Locos de Características Quantitativas/genética
13.
Physiol Plant ; 168(4): 790-802, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31400248

RESUMO

The ionome is the elemental composition of a living organism, its tissues, cells or cell compartments. The ionomes of roots, stems and leaves of 14 native Brazilian forest species were characterised to examine the relationships between plant and organ ionomes and the phylogenetic and ecological affiliations of species. The null hypothesis that ionomes of Brazilian forest species and their organs do not differ was tested. Concentrations of mineral nutrients in roots, stems and leaves were determined for 14 Brazilian forest species, representing seven angiosperm orders, grown hydroponically in a complete nutrient solution. The 14 species could be differentiated by their ionomes and the partitioning of mineral nutrients between organs. The ionomic differences between the 14 species did not reflect their phylogenetic relationships or successional ecology. Differences between shoot ionomes and root ionomes were greater than differences in the ionome of an organ when compared among genotypes. In conclusion, differences in ionomes of species and their organs reflect a combination of ancient phylogenetic and recent environmental adaptations.


Assuntos
Íons/análise , Magnoliopsida/química , Magnoliopsida/genética , Filogenia , Brasil , Florestas , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química
14.
J Sci Food Agric ; 100(5): 1990-1997, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31849063

RESUMO

BACKGROUND: Selenium (Se) is an essential element for humans and animals. Rice is one of the most commonly consumed cereals in the world, so the agronomic biofortification of cereals with Se may be a good strategy to increase the levels of daily intake of Se by the population. This study evaluated the agronomic biofortification of rice genotypes with Se and its effects on grain nutritional quality. Five rates of Se (0, 10, 25, 50, and 100 g ha -1 ) were applied as selenate via the soil to three rice genotypes under field conditions. RESULTS: Selenium concentrations in the leaves and polished grains increased linearly in response to Se application rates. A highly significant correlation was observed between the Se rates and the Se concentration in the leaves and grains, indicating high translocation of Se. The application of Se also increased the concentration of albumin, globulin, prolamin, and glutelin in polished grains. CONCLUSION: Biofortifying rice genotypes using 25 g Se ha -1 could increase the average daily Se intake from 4.64 to 66 µg day-1 . Considering that the recommended daily intake of Se by adults is 55 µg day-1 , this agronomic strategy could contribute to alleviating widespread Se malnutrition. © 2019 Society of Chemical Industry.


Assuntos
Oryza/química , Proteínas de Armazenamento de Sementes/análise , Selênio/análise , Biofortificação , Fertilizantes/análise , Genótipo , Oryza/genética , Oryza/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo , Selênio/metabolismo
15.
Ann Bot ; 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31599920

RESUMO

BACKGROUND: Breeding for advantageous root traits will play a fundamental role in improving the efficiency of water and nutrient acquisition, closing yield gaps, and underpinning the "Evergreen Revolution" that must match crop production with human demand. SCOPE: This preface provides an overview of a Special Issue of Annals of Botany on "Root traits benefitting crop production in environments with limited water and nutrient availability". The first papers in the Special Issue examine how breeding for reduced shoot stature and greater harvest index during the Green Revolution affected root system architecture. It is observed that reduced plant height and root architecture are inherited independently and can be improved simultaneously to increase the acquisition and utilisation of carbon, water and mineral nutrients. These insights are followed by papers examining beneficial root traits for resource acquisition in environments with limited water or nutrient availability, such as deep rooting, control of hydraulic conductivity, formation of aerenchyma, proliferation of lateral roots and root hairs, foraging of nutrient-rich patches, manipulation of rhizosphere pH and the exudation of low molecular weight organic solutes. The Special Issue concludes with papers exploring the interactions of plant roots and microorganisms, highlighting the need for plants to control the symbiotic relationships between mycorrhizal fungi and rhizobia to achieve maximal growth, and the roles of plants and microbes in the modification and development of soils.

16.
Physiol Plant ; 167(3): 418-432, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30690727

RESUMO

Combined application of nitrogen (N) and potassium (K) fertilizer could significantly enhance crop yield. Crop yield and photosynthesis are inseparable. However, the influence of N and K interaction on photosynthesis is still not fully understood. Field and hydroponic experiments were conducted to examine the effects of N and K interaction on leaf photosynthesis characteristics and to explore the mechanisms in the hydroponic experiment. CO2 conductance and carboxylation characteristic parameters of oilseed leaves were measured under different N and K supplies. Results indicated that detectable increases in leaf area, biomass and net photosynthetic rate (An ) were observed under optimal N and K supply in field and hydroponic experiments. The ratio of total CO2 diffusion conductance to the maximum carboxylation rate (gtot /Vcmax ) and An presented a linear-plateau relationship. Under insufficient N, increased K contributed to the CO2 transmission capacity and improved the proportion of N used for carboxylation, promoting gtot /Vcmax . However, the low Vcmax associated with N insufficiency limited the An . High N supply obviously accelerated Vcmax , yet K deficiency led to a reduction of gtot , which restricted Vcmax . Synchronous increases in N and K supplementation ensured the appropriate ratio of N to K content in leaves, which simultaneously facilitated gtot and Vcmax and preserved a gtot /Vcmax suitable for guaranteeing CO2 transmission and carboxylation coordination; the overall effect was increased An and leaf area. These results highlight the suitable N and K nutrients to coordinate CO2 diffusion and carboxylation, thereby enhancing photosynthetic capacity and area to obtain high crop yield.


Assuntos
Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Potássio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia
17.
Physiol Plant ; 166(4): 996-1007, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30515843

RESUMO

The fragmentary information on phosphorus (P) × zinc (Zn) interactions in plants warrants further study, particularly in plants known for their high P and Zn requirements, such as cotton (Gossypium hirsutum L.). The objective of this study was to investigate the effect of P × Zn interactions in a modern cultivar of cotton grown hydroponically. Biomass, mineral nutrition and photosynthetic parameters were monitored in plants receiving contrasting combinations of P and Zn supply. Root biomass, length and surface area were similar in plants with low P and/or low Zn supply to those in plants grown with high P and high Zn supply, reflecting an increased root/shoot biomass quotient when plants lack sufficient P or Zn for growth. Increasing P supply and reducing Zn supply increased shoot P concentrations, whilst shoot Zn concentrations were influenced largely by Zn supply. A balanced P × Zn supply (4 mM P × 4 µM Zn) enabled greatest biomass accumulation, while an imbalanced supply of these nutrients led to Zn deficiency, P toxicity or Zn toxicity. Net photosynthetic rate, stomatal conductance, transpiration rate and instantaneous carboxylation efficiency increased as P or Zn supply increased. Although increasing P supply reduced the P-use efficiency in photosynthesis (PUEP) and increasing Zn supply reduced the Zn-use efficiency in photosynthesis (ZnUEP), increasing Zn supply at a given P supply increased PUEP and increasing P supply at a given Zn supply increased ZnUEP. These results suggest that agricultural management strategies should seek for balanced mineral nutrition to optimize yields and resource-use efficiencies.


Assuntos
Gossypium/metabolismo , Fósforo/metabolismo , Zinco/metabolismo , Biomassa , Gossypium/fisiologia , Fotossíntese/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia
18.
J Sci Food Agric ; 99(13): 5969-5983, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31215030

RESUMO

BACKGROUND: Selenium (Se) is a nutrient for animals and humans, and is considered beneficial to higher plants. Selenium concentrations are low in most soils, which can result in a lack of Se in plants, and consequently in human diets. Phytic acid (PA) is the main storage form of phosphorus in seeds, and it is able to form insoluble complexes with essential minerals in the monogastric gut. This study aimed to establish optimal levels of Se application to cowpea, with the aim of increasing Se concentrations. The efficiency of agronomic biofortification was evaluated by the application of seven levels of Se (0, 2.5, 5, 10, 20, 40, and 60 g ha-1 ) from two sources (selenate and selenite) to the soil under field conditions in 2016 and 2017. RESULTS: Application of Se as selenate led to greater plant Se concentrations than application as selenite in both leaves and grains. Assuming human cowpea consumption of 54.2 g day-1 , Se application of 20 g ha-1 in 2016 or 10 g ha-1 in 2017 as selenate would have provided a suitable daily intake of Se (between 20 and 55 µg day-1 ) for humans. Phytic acid showed no direct response to Se application. CONCLUSION: Selenate provides greater phytoavailability than selenite. The application of 10 g Se ha-1 of selenate to cowpea plants could provide sufficient seed Se to increase daily human intake by 13-14 µg d-1 . © 2019 Society of Chemical Industry.


Assuntos
Biofortificação/métodos , Ácido Fítico/análise , Ácido Selênico/análise , Ácido Selenioso/análise , Selênio/análise , Vigna/química , Fertilizantes/análise , Ácido Fítico/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Sementes/química , Sementes/metabolismo , Vigna/metabolismo
19.
Plant Cell Environ ; 41(10): 2357-2372, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851096

RESUMO

Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and increased the plant's resistance to herbivorous insects. Here, we addressed the question of how tissue K affects the development of fungal pathogens and whether sensitivity of the pathogens to JA could play a role for the K-disease relationship in barley (Hordeum vulgare cv. Optic). We report that K-deprived barley plants showed increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip-to-base K-concentration gradient within leaves of K-sufficient plants was quantitatively mirrored by the transcript levels of JA-responsive genes. The local leaf tissue K concentrations affected the development of two economically important fungi in opposite ways, showing a positive correlation with powdery mildew (Blumeria graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease symptoms. B. graminis induced a JA response in the plant and was sensitive to methyl-JA treatment whereas R. commune initiated no JA response and was JA insensitive. Our study challenges the view that high K generally improves plant health and suggests that JA sensitivity of pathogens could be an important factor in determining the exact K-disease relationship.


Assuntos
Ascomicetos/metabolismo , Ciclopentanos/metabolismo , Hordeum/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Potássio/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/metabolismo , Hordeum/microbiologia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase
20.
J Exp Bot ; 69(12): 2995-3007, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669007

RESUMO

Storage nitrogen (N) is a buffer pool for maintaining leaf growth and synthesizing photosynthetic proteins, but the dynamics of its forms within the life cycle of a single leaf and how it is influenced by N supply remain poorly understood. A field experiment was conducted to estimate the influence of N supply on leaf growth, photosynthetic characteristics, and N partitioning inthe sixth leaf of winter oilseed rape (Brassica napus L.) from emergence through senescence. Storage N content (Nstore) decreased gradually along with leaf expansion. The relative growth rate based on leaf area (RGRa) was positively correlated with Nstore during leaf expansion. The water-soluble protein form of storage N was the main N source for leaf expansion. After the leaves fully expanded, the net photosynthetic rate (An) followed a linear-plateau response to Nstore, with An stabilizing at the highest value above a threshold and declining below the threshold. Non-protein and SDS (detergent)-soluble protein forms of storage N were the main N sources for maintaining photosynthesis. For the leaf N economy, storage N is used for co-ordinating leaf expansion and photosynthetic capacity. N supply can improve Nstore, thereby promoting leaf growth and biomass.


Assuntos
Brassica napus/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , China , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA