Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 493(7431): 241-5, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23302862

RESUMO

Insulin receptor signalling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation and survival. Insulin resistance contributes to the pathogenesis of type 2 diabetes mellitus and the onset of Alzheimer's disease; aberrant signalling occurs in diverse cancers, exacerbated by cross-talk with the homologous type 1 insulin-like growth factor receptor (IGF1R). Despite more than three decades of investigation, the three-dimensional structure of the insulin-insulin receptor complex has proved elusive, confounded by the complexity of producing the receptor protein. Here we present the first view, to our knowledge, of the interaction of insulin with its primary binding site on the insulin receptor, on the basis of four crystal structures of insulin bound to truncated insulin receptor constructs. The direct interaction of insulin with the first leucine-rich-repeat domain (L1) of insulin receptor is seen to be sparse, the hormone instead engaging the insulin receptor carboxy-terminal α-chain (αCT) segment, which is itself remodelled on the face of L1 upon insulin binding. Contact between insulin and L1 is restricted to insulin B-chain residues. The αCT segment displaces the B-chain C-terminal ß-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone-receptor recognition is novel within the broader family of receptor tyrosine kinases. We support these findings by photo-crosslinking data that place the suggested interactions into the context of the holoreceptor and by isothermal titration calorimetry data that dissect the hormone-insulin receptor interface. Together, our findings provide an explanation for a wealth of biochemical data from the insulin receptor and IGF1R systems relevant to the design of therapeutic insulin analogues.


Assuntos
Insulina/química , Insulina/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Animais , Sítios de Ligação , Calorimetria , Bovinos , Linhagem Celular , Cristalografia por Raios X , Humanos , Leucina/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
2.
Proc Natl Acad Sci U S A ; 111(33): E3395-404, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25092300

RESUMO

Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in ß cells and receptor binding at target tissues. Insight may be obtained from truncated "microreceptors" that reconstitute the primary hormone-binding site (α-subunit domains L1 and αCT). We demonstrate that, on microreceptor binding, this segment undergoes concerted hinge-like rotation at its B20-B23 ß-turn, coupling reorientation of Phe(B24) to a 60° rotation of the B25-B28 ß-strand away from the hormone core to lie antiparallel to the receptor's L1-ß2 sheet. Opening of this hinge enables conserved nonpolar side chains (Ile(A2), Val(A3), Val(B12), Phe(B24), and Phe(B25)) to engage the receptor. Restraining the hinge by nonstandard mutagenesis preserves native folding but blocks receptor binding, whereas its engineered opening maintains activity at the price of protein instability and nonnative aggregation. Our findings rationalize properties of clinical mutations in the insulin family and provide a previously unidentified foundation for designing therapeutic analogs. We envisage that a switch between free and receptor-bound conformations of insulin evolved as a solution to conflicting structural determinants of biosynthesis and function.


Assuntos
Insulina/metabolismo , Receptor de Insulina/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 109(28): 11166-71, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22736795

RESUMO

The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal ß-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 ß-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in ß-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane ß-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.


Assuntos
Proteínas Tirosina Quinases/química , Receptor de Insulina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Bacillus/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , Hormônios/metabolismo , Modelos Biológicos , Conformação Molecular , Mutagênese , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais , Tirosina/química
4.
J Biol Chem ; 285(7): 5040-55, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19959476

RESUMO

Proinsulin exhibits a single structure, whereas insulin-like growth factors refold as two disulfide isomers in equilibrium. Native insulin-related growth factor (IGF)-I has canonical cystines (A6-A11, A7-B7, and A20-B19) maintained by IGF-binding proteins; IGF-swap has alternative pairing (A7-A11, A6-B7, and A20-B19) and impaired activity. Studies of mini-domain models suggest that residue B5 (His in insulin and Thr in IGFs) governs the ambiguity or uniqueness of disulfide pairing. Residue B5, a site of mutation in proinsulin causing neonatal diabetes, is thus of broad biophysical interest. Here, we characterize reciprocal B5 substitutions in the two proteins. In insulin, His(B5) --> Thr markedly destabilizes the hormone (DeltaDeltaG(u) 2.0 +/- 0.2 kcal/mol), impairs chain combination, and blocks cellular secretion of proinsulin. The reciprocal IGF-I substitution Thr(B5) --> His (residue 4) specifies a unique structure with native (1)H NMR signature. Chemical shifts and nuclear Overhauser effects are similar to those of native IGF-I. Whereas wild-type IGF-I undergoes thiol-catalyzed disulfide exchange to yield IGF-swap, His(B5)-IGF-I retains canonical pairing. Chemical denaturation studies indicate that His(B5) does not significantly enhance thermodynamic stability (DeltaDeltaG(u) 0.2 +/- 0.2 kcal/mol), implying that the substitution favors canonical pairing by destabilizing competing folds. Whereas the activity of Thr(B5)-insulin is decreased 5-fold, His(B5)-IGF-I exhibits 2-fold increased affinity for the IGF receptor and augmented post-receptor signaling. We propose that conservation of Thr(B5) in IGF-I, rescued from structural ambiguity by IGF-binding proteins, reflects fine-tuning of signal transduction. In contrast, the conservation of His(B5) in insulin highlights its critical role in insulin biosynthesis.


Assuntos
Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/química , Insulina/farmacologia , Animais , Linhagem Celular , Dicroísmo Circular , Dissulfetos , Glicosilação , Humanos , Insulina/síntese química , Fator de Crescimento Insulin-Like I/síntese química , Espectroscopia de Ressonância Magnética , Camundongos , Fosforilação/efeitos dos fármacos , Proinsulina/biossíntese , Proinsulina/genética , Proinsulina/metabolismo , Dobramento de Proteína , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA