RESUMO
Surface effects strongly dominate the intrinsic properties of semiconductor nanowires (NWs), an observation that is commonly attributed to the presence of surface states and their modification of the electronic band structure. Although the effects of the exposed, bare NW surface have been widely studied with respect to charge carrier transport and optical properties, the underlying electronic band structure, Fermi level pinning, and surface band bending profiles are not well explored. Here, we directly and quantitatively assess the Fermi level pinning at the surfaces of composition-tunable, intrinsically n-type InGaAs NWs, as one of the prominent, technologically most relevant NW systems, by using correlated photoluminescence (PL) and X-ray photoemission spectroscopy (XPS). From the PL spectral response, we reveal two dominant radiative recombination pathways, that is, direct near-band edge transitions and red-shifted, spatially indirect transitions induced by surface band bending. The separation of their relative transition energies changes with alloy composition by up to more than â¼40 meV and represent a direct measure for the amount of surface band bending. We further extract quantitatively the Fermi level to surface valence band maximum separation using XPS, and directly verify a composition-dependent transition from downward to upward band bending (surface electron accumulation to depletion) with increasing Ga-content x(Ga) at a crossover near x(Ga) â¼ 0.2. Core level spectra further demonstrate the nature of extrinsic surface states being caused by In-rich suboxides arising from the native oxide layer at the InGaAs NW surface.
RESUMO
The earth-abundant semiconductor Cu3BiS3 (CBS) exhibits promising photovoltaic properties and is often considered analogous to the solar absorbers copper indium gallium diselenide (CIGS) and copper zinc tin sulfide (CZTS) despite few device reports. The extent to which this is justifiable is explored via a thorough X-ray photoemission spectroscopy (XPS) analysis: spanning core levels, ionization potential, work function, surface contamination, cleaning, band alignment, and valence-band density of states. The XPS analysis overcomes and addresses the shortcomings of prior XPS studies of this material. Temperature-dependent absorption spectra determine a 1.2 eV direct band gap at room temperature; the widely reported 1.4-1.5 eV band gap is attributed to weak transitions from the low density of states of the topmost valence band previously being undetected. Density functional theory HSE06 + SOC calculations determine the band structure, optical transitions, and well-fitted absorption and Raman spectra. Valence band XPS spectra and model calculations find the CBS bonding to be superficially similar to CIGS and CZTS, but the Bi3+ cations (and formally occupied Bi 6s orbital) have fundamental impacts: giving a low ionization potential (4.98 eV), suggesting that the CdS window layer favored for CIGS and CZTS gives detrimental band alignment and should be rejected in favor of a better aligned material in order for CBS devices to progress.
RESUMO
The earth-abundant material CuSbS2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa(1-x)Se2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.
RESUMO
We report that the internal quantum efficiency for hydrogen generation in spherical, Pt-decorated CdS nanocrystals can be tuned by quantum confinement, resulting in higher efficiencies for smaller than for larger nanocrystals (17.3% for 2.8 nm and 11.4% for 4.6 nm diameter nanocrystals). We attribute this to a larger driving force for electron and hole transfer in the smaller nanocrystals. The larger internal quantum efficiency in smaller nanocrystals enables a novel colloidal dual-band gap cell utilising differently sized nanocrystals and showing larger external quantum efficiencies than cells with only one size of nanocrystals (9.4% for 2.8 nm particles only and 14.7% for 2.8 nm and 4.6 nm nanocrystals). This represents a proof-of-principle for future colloidal tandem cell.