Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403854

RESUMO

Atomistic simulations of biological processes offer insights at a high level of spatial and temporal resolution, but accelerated sampling is often required for probing timescales of biologically relevant processes. The resulting data need to be statistically reweighted and condensed in a concise yet faithful manner to facilitate interpretation. Here, we provide evidence that a recently proposed approach for the unsupervised determination of optimized reaction coordinate (RC) can be used for both analysis and reweighting of such data. We first show that for a peptide interconverting between helical and collapsed configurations, the optimal RC permits efficient reconstruction of equilibrium properties from enhanced sampling trajectories. Upon RC-reweighting, kinetic rate constants and free energy profiles are in good agreement with values obtained from equilibrium simulations. In a more challenging test, we apply the method to enhanced sampling simulations of the unbinding of an acetylated lysine-containing tripeptide from the bromodomain of ATAD2. The complexity of this system allows us to investigate the strengths and limitations of these RCs. Overall, the findings presented here underline the potential of the unsupervised determination of reaction coordinates and the synergy with orthogonal analysis methods, such as Markov state models and SAPPHIRE analysis.

2.
FEBS J ; 285(23): 4367-4377, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30347514

RESUMO

The promiscuous activities of a recursive, generalist enzyme provide raw material for the emergence of metabolic pathways. Here, we use a synthetic biology approach to recreate such an evolutionary setup in central metabolism and explore how cellular physiology adjusts to enable recursive catalysis. We generate an Escherichia coli strain deleted in transketolase and glucose 6-phosphate dehydrogenase, effectively eliminating the native pentose phosphate pathway. We demonstrate that the overexpression of phosphoketolase restores prototrophic growth by catalyzing three consecutive reactions, cleaving xylulose 5-phosphate, fructose 6-phosphate, and, notably, sedoheptulose 7-phosphate. We find that the activity of the resulting synthetic pathway becomes possible due to the recalibration of steady-state concentrations of key metabolites, such that the in vivo cleavage rates of all three phosphoketolase substrates are similar. This study demonstrates our ability to rewrite one of nature's most conserved pathways and provides insight into the flexibility of cellular metabolism during pathway emergence.


Assuntos
Aldeído Liases/metabolismo , Carbono/metabolismo , Glucose/metabolismo , Glicólise , Via de Pentose Fosfato , Biologia Sintética/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA