Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(18): e202401626, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38416546

RESUMO

Coenzyme B12 (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression. Here, we have examined AdoRhbl, the non-natural rhodium analogue of AdoCbl, as a photostable isostructural surrogate for AdoCbl. We show that AdoRhbl closely emulates AdoCbl in its uptake by bacterial cells and structural functionality as a regulatory ligand for CarH tetramerization, DNA binding, and repressor activity. Remarkably, we find AdoRhbl is photostable even when bound "base-off/His-on" to CarH in vitro and in vivo. Thus, AdoRhbl, an antivitamin B12, also represents an unprecedented anti-photoregulatory ligand, opening a pathway to precisely target biomimetic inhibition of AdoCbl-based photoregulation, with new possibilities for selective antibacterial applications. Computational biomolecular analysis of AdoRhbl binding to CarH yields detailed structural insights into this complex, which suggest that the adenosyl group of photoexcited AdoCbl bound to CarH may specifically undergo a concerted non-radical syn-1,2-elimination mechanism, an aspect not previously considered for this photoreceptor.


Assuntos
Fosfotreonina/análogos & derivados , Ródio , Ligantes , Cobamidas/química , Bactérias/metabolismo , DNA
2.
Angew Chem Int Ed Engl ; 58(31): 10756-10760, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31115943

RESUMO

The B12 cofactors instill a natural curiosity regarding the primordial selection and evolution of their corrin ligand. Surprisingly, this important natural macrocycle has evaded molecular scrutiny, and its specific role in predisposing the incarcerated cobalt ion for organometallic catalysis has remained obscure. Herein, we report the biosynthesis of the cobalt-free B12 corrin moiety, hydrogenobyric acid (Hby), a compound crafted through pathway redesign. Detailed insights from single-crystal X-ray and solution structures of Hby have revealed a distorted helical cavity, redefining the pattern for binding cobalt ions. Consequently, the corrin ligand coordinates cobalt ions in desymmetrized "entatic" states, thereby promoting the activation of B12 -cofactors for their challenging chemical transitions. The availability of Hby also provides a route to the synthesis of transition metal analogues of B12 .


Assuntos
Corrinoides/biossíntese , Uroporfirinas/metabolismo , Vitamina B 12/metabolismo , Biocatálise , Cobalto/química , Cobalto/metabolismo , Corrinoides/química , Ligantes , Estrutura Molecular , Uroporfirinas/química , Vitamina B 12/química
3.
Angew Chem Int Ed Engl ; 55(37): 11281-6, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27355790

RESUMO

B12 is unique among the vitamins as it is biosynthesized only by certain prokaryotes. The complexity of its synthesis relates to its distinctive cobalt corrin structure, which is essential for B12 biochemistry and renders coenzyme B12 (AdoCbl) so intriguingly suitable for enzymatic radical reactions. However, why is cobalt so fit for its role in B12 -dependent enzymes? To address this question, we considered the substitution of cobalt in AdoCbl with rhodium to generate the rhodium analogue 5'-deoxy-5'-adenosylrhodibalamin (AdoRbl). AdoRbl was prepared by de novo total synthesis involving both biological and chemical steps. AdoRbl was found to be inactive in vivo in microbial bioassays for methionine synthase and acted as an in vitro inhibitor of an AdoCbl-dependent diol dehydratase. Solution NMR studies of AdoRbl revealed a structure similar to that of AdoCbl. However, the crystal structure of AdoRbl revealed a conspicuously better fit of the corrin ligand for Rh(III) than for Co(III) , challenging the current views concerning the evolution of corrins.


Assuntos
Cobamidas/farmacologia , Corrinoides/síntese química , Corrinoides/farmacologia , Desidrogenase do Álcool de Açúcar/antagonistas & inibidores , Citrobacter freundii/enzimologia , Cobamidas/química , Corrinoides/química , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Desidrogenase do Álcool de Açúcar/metabolismo
4.
J Am Chem Soc ; 135(37): 13648-51, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24007238

RESUMO

Essential to biological activity of adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl) is the Co-C bond cleavage step. Hence, we report an accurate determination of the homolytic gas-phase Co-C bond dissociation energies in the related adenosyl- and methylcobinamides (41.5 ± 1.2 and 44.6 ± 0.8 kcal/mol, respectively) utilizing an energy-resolved threshold collision-induced dissociation technique. This approach allows for benchmarking of electronic structure methods separate from (often ill-defined) solvent effects. Adequacy of various density functional theory methods has been tested with respect to the experimentally obtained values.


Assuntos
Carbono/química , Cobalto/química , Cobamidas/química , Gases , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Termodinâmica
5.
mBio ; 13(5): e0112122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993747

RESUMO

In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.


Assuntos
Riboswitch , Vitamina B 12/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Coenzimas/metabolismo , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA