Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
NMR Biomed ; 37(1): e5038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712359

RESUMO

The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measured R 2 ∗ -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC-AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC-AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE-AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE-AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.


Assuntos
Artérias , Meios de Contraste , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Algoritmos , Perfusão
2.
NMR Biomed ; : e5225, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107878

RESUMO

Both inflow and the partial volume effect (PVE) are sources of error when measuring the arterial input function (AIF) in dynamic contrast-enhanced (DCE) MRI. This is relevant, as errors in the AIF can propagate into pharmacokinetic parameter estimations from the DCE data. A method was introduced for flow correction by estimating and compensating the number of the perceived pulse of spins during inflow. We hypothesized that the PVE has an impact on concentration-time curves similar to inflow. Therefore, we aimed to study the efficiency of this method to compensate for both effects simultaneously. We first simulated an AIF with different levels of inflow and PVE contamination. The peak, full width at half-maximum (FWHM), and area under curve (AUC) of the reconstructed AIFs were compared with the true (simulated) AIF. In clinical data, the PVE was included in AIFs artificially by averaging the signal in voxels surrounding a manually selected point in an artery. Subsequently, the artificial partial volume AIFs were corrected and compared with the AIF from the selected point. Additionally, corrected AIFs from the internal carotid artery (ICA), the middle cerebral artery (MCA), and the venous output function (VOF) estimated from the superior sagittal sinus (SSS) were compared. As such, we aimed to investigate the effectiveness of the correction method with different levels of inflow and PVE in clinical data. The simulation data demonstrated that the corrected AIFs had only marginal bias in peak value, FWHM, and AUC. Also, the algorithm yielded highly correlated reconstructed curves over increasingly larger neighbourhoods surrounding selected arterial points in clinical data. Furthermore, AIFs measured from the ICA and MCA produced similar peak height and FWHM, whereas a significantly larger peak and lower FWHM was found compared with the VOF. Our findings indicate that the proposed method has high potential to compensate for PVE and inflow simultaneously. The corrected AIFs could thereby provide a stable input source for DCE analysis.

3.
J Magn Reson Imaging ; 57(6): 1908-1921, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36218321

RESUMO

BACKGROUND: Free-breathing 1 H ventilation MRI shows promise but only single-center validation has yet been performed against methods which directly image lung ventilation in patients with cystic fibrosis (CF). PURPOSE: To investigate the relationship between 129 Xe and 1 H ventilation images using data acquired at two centers. STUDY TYPE: Sequence comparison. POPULATION: Center 1; 24 patients with CF (12 female) aged 9-47 years. Center 2; 7 patients with CF (6 female) aged 13-18 years, and 6 healthy controls (6 female) aged 21-31 years. Data were acquired in different patients at each center. FIELD STRENGTH/SEQUENCE: 1.5 T, 3D steady-state free precession and 2D spoiled gradient echo. ASSESSMENT: Subjects were scanned with 129 Xe ventilation and 1 H free-breathing MRI and performed pulmonary function tests. Ventilation defect percent (VDP) was calculated using linear binning and images were visually assessed by H.M., L.J.S., and G.J.C. (10, 5, and 8 years' experience). STATISTICAL TESTS: Correlations and linear regression analyses were performed between 129 Xe VDP, 1 H VDP, FEV1 , and LCI. Bland-Altman analysis of 129 Xe VDP and 1 H VDP was carried out. Differences in metrics were assessed using one-way ANOVA or Kruskal-Wallis tests. RESULTS: 129 Xe VDP and 1 H VDP correlated strongly with; each other (r = 0.84), FEV1 z-score (129 Xe VDP r = -0.83, 1 H VDP r = -0.80), and LCI (129 Xe VDP r = 0.91, 1 H VDP r = 0.82). Bland-Altman analysis of 129 Xe VDP and 1 H VDP from both centers had a bias of 0.07% and limits of agreement of -16.1% and 16.2%. Linear regression relationships of VDP with FEV1 were not significantly different between 129 Xe and 1 H VDP (P = 0.08), while 129 Xe VDP had a stronger relationship with LCI than 1 H VDP. DATA CONCLUSION: 1 H ventilation MRI shows large-scale agreement with 129 Xe ventilation MRI in CF patients with established lung disease but may be less sensitive to subtle ventilation changes in patients with early-stage lung disease. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Fibrose Cística , Humanos , Feminino , Fibrose Cística/diagnóstico por imagem , Ventilação Pulmonar , Pulmão/diagnóstico por imagem , Respiração , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio
4.
Eur Radiol ; 33(7): 4767-4779, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36826502

RESUMO

OBJECTIVES: Follow-up of congenital lung abnormalities (CLA) is currently done with chest computer tomography (CT). Major disadvantages of CT are exposure to ionizing radiation and need for contrast enhancement to visualise vascularisation. Chest magnetic resonance imaging (MRI) could be a safe alternative to image CLA without using contrast agents. The objective of this cohort study was to develop a non-contrast MRI protocol for the follow-up of paediatric CLA patients, and to compare findings on MRI to postnatal CT in school age CLA patients. METHODS: Twenty-one CLA patients, 4 after surgical resection and 17 unoperated (mean age 12.8 (range 9.4-15.9) years), underwent spirometry and chest MRI. MRI was compared to postnatal CT on appearance and size of the lesion, and lesion associated abnormalities, such as hyperinflation and atelectasis. RESULTS: By comparing school-age chest MRI to postnatal CT, radiological appearance and diagnostic interpretation of the type of lesion changed in 7 (41%) of the 17 unoperated patients. In unoperated patients, the relative size of the lesion in relation to the total lung volume remained stable (0.9% (range - 6.2 to + 6.7%), p = 0.3) and the relative size of lesion-associated parenchymal abnormalities decreased (- 2.2% (range - 0.8 to + 2.8%), p = 0.005). CONCLUSION: Non-contrast-enhanced chest MRI was able to identify all CLA-related lung abnormalities. Changes in radiological appearance between MRI and CT were related to CLA changes, patients' growth, and differences between imaging modalities. Further validation is needed for MRI to be introduced as a safe imaging method for the follow-up of paediatric CLA patients. KEY POINTS: • Non-contrast-enhanced chest MRI is able to identify anatomical lung changes related to congenital lung abnormalities, including vascularisation. • At long-term follow-up, the average size of congenital lung abnormalities in relation to normal lung volume remains stable. • At long-term follow-up, the average size of congenital lung abnormalities associated parenchymal abnormalities such as atelectasis in relation to normal lung volume decreases.


Assuntos
Bivalves , Atelectasia Pulmonar , Humanos , Criança , Animais , Adolescente , Estudos de Coortes , Tomografia Computadorizada por Raios X/métodos , Pulmão/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
5.
J Physiol ; 600(17): 3931-3950, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862359

RESUMO

Prematurely born young adults who experienced neonatal oxidative injury (NOI) of the lungs have increased incidence of cardiovascular disease. Here, we investigated the long-term effects of NOI on cardiopulmonary function in piglets at the age of 10-12 weeks. To induce NOI, term-born piglets (1.81 ± 0.06 kg) were exposed to hypoxia (10-12% F iO 2 ${F}_{{\rm{iO}}_{\rm{2}}}$ ), within 2 days after birth, and maintained for 4 weeks or until symptoms of heart failure developed (range 16-28 days), while SHAM piglets were normoxia raised. Following recovery (>5 weeks), NOI piglets were surgically instrumented to measure haemodynamics during hypoxic challenge testing (HCT) and exercise with modulation of the nitric-oxide system. During exercise, NOI piglets showed a normal increase in cardiac index, but an exaggerated increase in pulmonary artery pressure and a blunted increase in left atrial pressure - suggesting left atrial under-filling - consistent with an elevated pulmonary vascular resistance (PVR), which correlated with the duration of hypoxia exposure. Moreover, hypoxia duration correlated inversely with stroke volume (SV) during exercise. Nitric oxide synthase inhibition and HCT resulted in an exaggerated increase in PVR, while the PVR reduction by phosphodiesterase-5 inhibition was enhanced in NOI compared to SHAM piglets. Finally, within the NOI piglet group, prolonged duration of hypoxia was associated with a better maintenance of SV during HCT, likely due to the increase in RV mass. In conclusion, duration of neonatal hypoxia appears an important determinant of alterations in cardiopulmonary function that persist further into life. These changes encompass both pulmonary vascular and cardiac responses to hypoxia and exercise. KEY POINTS: Children who suffered from neonatal oxidative injury, such as very preterm born infants, have increased risk of cardiopulmonary disease later in life. Risk stratification requires knowledge of the mechanistic underpinning and the time course of progression into cardiopulmonary disease. Exercise and hypoxic challenge testing showed that 10- to 12-week-old swine that previously experienced neonatal oxidative injury had increased pulmonary vascular resistance and nitric oxide dependency. Duration of neonatal oxidative injury was a determinant of structural and functional cardiopulmonary remodelling later in life. Remodelling of the right ventricle, as a result of prolonged neonatal oxidative injury, resulted in worse performance during exercise, but enabled better performance during the hypoxic challenge test. Increased nitric oxide dependency together with age- or comorbidity-related endothelial dysfunction may contribute to predisposition to pulmonary hypertension later in life.


Assuntos
Hipertensão Pulmonar , Disfunção Ventricular Direita , Animais , Animais Recém-Nascidos , Humanos , Hipóxia , Pulmão/irrigação sanguínea , Óxido Nítrico , Estresse Oxidativo , Suínos , Disfunção Ventricular Direita/etiologia
6.
Neuroimage ; 245: 118752, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823024

RESUMO

AIMS: Non-invasive measures of brain iron content would be of great benefit in neurodegeneration with brain iron accumulation (NBIA) to serve as a biomarker for disease progression and evaluation of iron chelation therapy. Although magnetic resonance imaging (MRI) provides several quantitative measures of brain iron content, none of these have been validated for patients with a severely increased cerebral iron burden. We aimed to validate R2* as a quantitative measure of brain iron content in aceruloplasminemia, the most severely iron-loaded NBIA phenotype. METHODS: Tissue samples from 50 gray- and white matter regions of a postmortem aceruloplasminemia brain and control subject were scanned at 1.5 T to obtain R2*, and biochemically analyzed with inductively coupled plasma mass spectrometry. For gray matter samples of the aceruloplasminemia brain, sample R2* values were compared with postmortem in situ MRI data that had been obtained from the same subject at 3 T - in situ R2*. Relationships between R2* and tissue iron concentration were determined by linear regression analyses. RESULTS: Median iron concentrations throughout the whole aceruloplasminemia brain were 10 to 15 times higher than in the control subject, and R2* was linearly associated with iron concentration. For gray matter samples of the aceruloplasminemia subject with an iron concentration up to 1000 mg/kg, 91% of variation in R2* could be explained by iron, and in situ R2* at 3 T and sample R2* at 1.5 T were highly correlated. For white matter regions of the aceruloplasminemia brain, 85% of variation in R2* could be explained by iron. CONCLUSIONS: R2* is highly sensitive to variations in iron concentration in the severely iron-loaded brain, and might be used as a non-invasive measure of brain iron content in aceruloplasminemia and potentially other NBIA disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ceruloplasmina/deficiência , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Autopsia , Ceruloplasmina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fenótipo
7.
Thorax ; 76(1): 44-52, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122446

RESUMO

RATIONALE: Paediatric laryngotracheal stenosis (LTS) is often successfully corrected with open airway surgery. However, respiratory and vocal sequelae frequently remain. Clinical care and surgical interventions could be improved with better understanding of these sequelae. OBJECTIVE: The objective of this cross-sectional study was to develop an upper airway MRI protocol to obtain information on anatomical and functional sequelae post-LTS repair. METHODS: Forty-eight patients (age 14.4 (range 7.5-30.7) years) and 11 healthy volunteers (15.9 (8.2-28.8) years) were included. Spirometry and static and dynamic upper airway MRI (3.0 T, 30 min protocol) were conducted. Analysis included assessment of postoperative anatomy and airway lumen measurements during static and dynamic (inspiration and phonation) acquisitions. MAIN RESULTS: Good image quality without artefacts was achieved for static and dynamic images in the majority of MRIs. MRI showed vocal cord thickening in 80.9% of patients and compared with volunteers, a significant decrease in vocal cord lumen area (22.0 (IQR 17.7-30.3) mm2 vs 35.1 (21.2-54.7) mm2, p=0.03) but not cricoid lumen area (62.3±27.0 mm2 vs 66.2±34.8 mm2, p=0.70). Furthermore, 53.2% of patients had an A-frame deformation at site of previous tracheal cannula, showing lumen collapse during inspiration. Dynamic imaging showed incomplete vocal cord abduction during inspiration in 42.6% and incomplete adduction during phonation in 61.7% of patients. CONCLUSIONS: Static and dynamic MRI is an excellent modality to non-invasively image anatomy, tissue characteristics and vocal cord dynamics of the upper airways. MRI-derived knowledge on postsurgical LTS sequelae might be used to improve surgery.


Assuntos
Laringoestenose/diagnóstico , Laringe/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Traqueia/diagnóstico por imagem , Estenose Traqueal/diagnóstico , Prega Vocal/diagnóstico por imagem , Adolescente , Adulto , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Adulto Jovem
8.
Basic Res Cardiol ; 116(1): 51, 2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510273

RESUMO

Pulmonary hypertension is common in heart failure with preserved ejection fraction (HFpEF). Here, we tested the hypothesis that comorbidities [diabetes mellitus (DM, streptozotocin), hypercholesterolemia (HC, high-fat diet) and chronic kidney disease (CKD, renal microembolization)] directly impair pulmonary vasomotor control in a DM + HC + CKD swine model. 6 months after induction of DM + HC + CKD, pulmonary arterial pressure was similar in chronically instrumented female DM + HC + CKD (n = 19) and Healthy swine (n = 18). However, cardiac output was lower both at rest and during exercise, implying an elevated pulmonary vascular resistance (PVR) in DM + HC + CKD swine (153 ± 10 vs. 122 ± 9 mmHg∙L-1∙min∙kg). Phosphodiesterase 5 inhibition and endothelin receptor antagonism decreased PVR in DM + HC + CKD (- 12 ± 12 and - 22 ± 7 mmHg∙L-1∙min∙kg) but not in Healthy swine (- 1 ± 12 and 2 ± 14 mmHg∙L-1∙min∙kg), indicating increased vasoconstrictor influences of phosphodiesterase 5 and endothelin. Inhibition of nitric oxide synthase produced pulmonary vasoconstriction that was similar in Healthy and DM + HC + CKD swine, but unmasked a pulmonary vasodilator effect of endothelin receptor antagonism in Healthy (- 56 ± 26 mmHg∙L-1∙min∙kg), whereas it failed to significantly decrease PVR in DM + HC + CKD, indicating loss of nitric oxide mediated inhibition of endothelin in DM + HC + CKD. Scavenging of reactive oxygen species (ROS) had no effect on PVR in either Healthy or DM + HC + CKD swine. Cardiovascular magnetic resonance imaging, under anesthesia, showed no right ventricular changes. Finally, despite an increased contribution of endogenous nitric oxide to vasomotor tone regulation in the systemic vasculature, systemic vascular resistance at rest was higher in DM + HC + CKD compared to Healthy swine (824 ± 41 vs. 698 ± 35 mmHg∙L-1∙min∙kg). ROS scavenging induced systemic vasodilation in DM + HC + CKD, but not Healthy swine. In conclusion, common comorbidities directly alter pulmonary vascular control, by enhanced PDE5 and endothelin-mediated vasoconstrictor influences, well before overt left ventricular backward failure or pulmonary hypertension develop.


Assuntos
Insuficiência Cardíaca , Animais , Antagonistas dos Receptores de Endotelina/farmacologia , Feminino , Óxido Nítrico , Volume Sistólico , Suínos , Vasoconstrição , Vasodilatadores
9.
Eur Radiol ; 31(6): 3846-3855, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33219845

RESUMO

OBJECTIVES: The aim of this study was to assess the effect of a deep learning (DL)-based reconstruction algorithm on late gadolinium enhancement (LGE) image quality and to evaluate its influence on scar quantification. METHODS: Sixty patients (46 ± 17 years, 50% male) with suspected or known cardiomyopathy underwent CMR. Short-axis LGE images were reconstructed using the conventional reconstruction and a DL network (DLRecon) with tunable noise reduction (NR) levels from 0 to 100%. Image quality of standard LGE images and DLRecon images with 75% NR was scored using a 5-point scale (poor to excellent). In 30 patients with LGE, scar size was quantified using thresholding techniques with different standard deviations (SD) above remote myocardium, and using full width at half maximum (FWHM) technique in images with varying NR levels. RESULTS: DLRecon images were of higher quality than standard LGE images (subjective quality score 3.3 ± 0.5 vs. 3.6 ± 0.7, p < 0.001). Scar size increased with increasing NR levels using the SD methods. With 100% NR level, scar size increased 36%, 87%, and 138% using 2SD, 4SD, and 6SD quantification method, respectively, compared to standard LGE images (all p values < 0.001). However, with the FWHM method, no differences in scar size were found (p = 0.06). CONCLUSIONS: LGE image quality improved significantly using a DL-based reconstruction algorithm. However, this algorithm has an important impact on scar quantification depending on which quantification technique is used. The FWHM method is preferred because of its independency of NR. Clinicians should be aware of this impact on scar quantification, as DL-based reconstruction algorithms are being used. KEY POINTS: • The image quality based on (subjective) visual assessment and image sharpness of late gadolinium enhancement images improved significantly using a deep learning-based reconstruction algorithm that aims to reconstruct high signal-to-noise images using a denoising technique. • Special care should be taken when scar size is quantified using thresholding techniques with different standard deviations above remote myocardium because of the large impact of these advanced image enhancement algorithms. • The full width at half maximum method is recommended to quantify scar size when deep learning algorithms based on noise reduction are used, as this method is the least sensitive to the level of noise and showed the best agreement with visual late gadolinium enhancement assessment.


Assuntos
Aprendizado Profundo , Gadolínio , Algoritmos , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Meios de Contraste , Feminino , Humanos , Aumento da Imagem , Imageamento por Ressonância Magnética , Masculino , Miocárdio/patologia
10.
Recent Results Cancer Res ; 216: 31-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32594384

RESUMO

Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the cancer cells but should also take aspects of the tumor microenvironment into account. This requires an understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology, this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Humanos , Oncologia
11.
J Cardiovasc Magn Reson ; 22(1): 68, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32938483

RESUMO

BACKGROUND: Cardiovascular magnetic resonance (CMR) phase contrast (PC) flow measurements suffer from phase offset errors. Background subtraction based on stationary phantom measurements can most reliably be used to overcome this inaccuracy. Stationary tissue correction is an alternative and does not require additional phantom scanning. The aim of this study was 1) to compare measurements with and without stationary tissue correction to phantom corrected measurements on different GE Healthcare CMR scanners using different software packages and 2) to evaluate the clinical implications of these methods. METHODS: CMR PC imaging of both the aortic and pulmonary artery flow was performed in patients on three different 1.5 T CMR scanners (GE Healthcare) using identical scan parameters. Uncorrected, first, second and third order stationary tissue corrected flow measurement were compared to phantom corrected flow measurements, our reference method, using Medis QFlow, Circle cvi42 and MASS software. The optimal (optimized) stationary tissue order was determined per scanner and software program. Velocity offsets, net flow, clinically significant difference (deviation > 10% net flow), and regurgitation severity were assessed. RESULTS: Data from 175 patients (28 (17-38) years) were included, of which 84% had congenital heart disease. First, second and third order and optimized stationary tissue correction did not improve the velocity offsets and net flow measurements. Uncorrected measurements resulted in the least clinically significant differences in net flow compared to phantom corrected data. Optimized stationary tissue correction per scanner and software program resulted in net flow differences (> 10%) in 19% (MASS) and 30% (Circle cvi42) of all measurements compared to 18% (MASS) and 23% (Circle cvi42) with no correction. Compared to phantom correction, regurgitation reclassification was the least common using uncorrected data. One CMR scanner performed worse and significant net flow differences of > 10% were present both with and without stationary tissue correction in more than 30% of all measurements. CONCLUSION: Phase offset errors had a significant impact on net flow quantification, regurgitation assessment and varied greatly between CMR scanners. Background phase correction using stationary tissue correction worsened accuracy compared to no correction on three GE Healthcare CMR scanners. Therefore, careful assessment of phase offset errors at each individual scanner is essential to determine whether routine use of phantom correction is necessary. TRIAL REGISTRATION: Observational Study.


Assuntos
Aorta/diagnóstico por imagem , Insuficiência da Valva Aórtica/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Hemodinâmica , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética/instrumentação , Artéria Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Adolescente , Adulto , Aorta/fisiopatologia , Insuficiência da Valva Aórtica/fisiopatologia , Velocidade do Fluxo Sanguíneo , Criança , Feminino , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Imagens de Fantasmas , Valor Preditivo dos Testes , Artéria Pulmonar/fisiopatologia , Insuficiência da Valva Pulmonar/fisiopatologia , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Estudos Retrospectivos , Índice de Gravidade de Doença , Adulto Jovem
12.
Eur Radiol ; 29(6): 2770-2782, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30519932

RESUMO

OBJECTIVES: This study was conducted in order to evaluate the effect of geometric distortion (GD) on MRI lung volume quantification and evaluate available manual, semi-automated, and fully automated methods for lung segmentation. METHODS: A phantom was scanned with MRI and CT. GD was quantified as the difference in phantom's volume between MRI and CT, with CT as gold standard. Dice scores were used to measure overlap in shapes. Furthermore, 11 subjects from a prospective population-based cohort study each underwent four chest MRI acquisitions. The resulting 44 MRI scans with 2D and 3D Gradwarp were used to test five segmentation methods. Intraclass correlation coefficient, Bland-Altman plots, Wilcoxon, Mann-Whitney U, and paired t tests were used for statistics. RESULTS: Using phantoms, volume differences between CT and MRI varied according to MRI positions and 2D and 3D Gradwarp correction. With the phantom located at the isocenter, MRI overestimated the volume relative to CT by 5.56 ± 1.16 to 6.99 ± 0.22% with body and torso coils, respectively. Higher Dice scores and smaller intraobject differences were found for 3D Gradwarp MR images. In subjects, semi-automated and fully automated segmentation tools showed high agreement with manual segmentations (ICC = 0.971-0.993 for end-inspiratory scans; ICC = 0.992-0.995 for end-expiratory scans). Manual segmentation time per scan was approximately 3-4 h and 2-3 min for fully automated methods. CONCLUSIONS: Volume overestimation of MRI due to GD can be quantified. Semi-automated and fully automated segmentation methods allow accurate, reproducible, and fast lung volume quantification. Chest MRI can be a valid radiation-free imaging modality for lung segmentation and volume quantification in large cohort studies. KEY POINTS: • Geometric distortion varies according to MRI setting and patient positioning. • Automated segmentation methods allow fast and accurate lung volume quantification. • MRI is a valid radiation-free alternative to CT for quantitative data analysis.


Assuntos
Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Criança , Estudos de Coortes , Feminino , Humanos , Medidas de Volume Pulmonar/métodos , Masculino , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes
13.
Basic Res Cardiol ; 112(3): 28, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28386775

RESUMO

Despite early revascularization, remodeling and dysfunction of the left ventricle (LV) after acute myocardial infarction (AMI) remain important therapeutic targets. Intermittent pacing therapy (IPT) of the LV can limit infarct size, when applied during early reperfusion. However, the effects of IPT on post-AMI LV remodeling and infarct healing are unknown. We therefore investigated the effects of IPT on global LV remodeling and infarct geometry in swine with a 3-day old AMI. For this purpose, fifteen pigs underwent 2 h ligation of the left circumflex coronary artery followed by reperfusion. An epicardial pacing lead was implanted in the peri-infarct zone. After three days, global LV remodeling and infarct geometry were assessed using magnetic resonance imaging (MRI). Animals were stratified into MI control and IPT groups. Thirty-five days post-AMI, follow-up MRI was obtained and myofibroblast content, markers of extracellular matrix (ECM) turnover and Wnt/frizzled signaling in infarct and non-infarct control tissue were studied. Results showed that IPT had no significant effect on global LV remodeling, function or infarct mass, but modulated infarct healing. In MI control pigs, infarct mass reduction was principally due to a 26.2 ± 4.4% reduction in infarct thickness (P ≤ 0.05), whereas in IPT pigs it was mainly due to a 35.7 ± 4.5% decrease in the number of infarct segments (P ≤ 0.05), with no significant change in infarct thickness. Myofibroblast content of the infarct zone was higher in IPT (10.9 ± 2.1%) compared to MI control (5.4 ± 1.6%; P ≤ 0.05). Higher myofibroblast presence did not coincide with alterations in expression of genes involved in ECM turnover or Wnt/frizzled signaling at 5 weeks follow-up. Taken together, IPT limited infarct expansion and altered infarct composition, showing that IPT influences remodeling of the infarct zone, likely by increasing regional myofibroblast content.


Assuntos
Estimulação Cardíaca Artificial/métodos , Infarto do Miocárdio/patologia , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Masculino , Reação em Cadeia da Polimerase , Distribuição Aleatória , Suínos
14.
BMC Pulm Med ; 15: 54, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943437

RESUMO

BACKGROUND: Pompe disease is a progressive metabolic myopathy. Involvement of respiratory muscles leads to progressive pulmonary dysfunction, particularly in supine position. Diaphragmatic weakness is considered to be the most important component. Standard spirometry is to some extent indicative but provides too little insight into diaphragmatic dynamics. We used lung MRI to study diaphragmatic and chest-wall movements in Pompe disease. METHODS: In ten adult Pompe patients and six volunteers, we acquired two static spirometer-controlled MRI scans during maximum inspiration and expiration. Images were manually segmented. After normalization for lung size, changes in lung dimensions between inspiration and expiration were used for analysis; normalization was based on the cranial-caudal length ratio (representing vertical diaphragmatic displacement), and the anterior-posterior and left-right length ratios (representing chest-wall movements due to thoracic muscles). RESULTS: We observed striking dysfunction of the diaphragm in Pompe patients; in some patients the diaphragm did not show any displacement. Patients had smaller cranial-caudal length ratios than volunteers (p < 0.001), indicating diaphragmatic weakness. This variable strongly correlated with forced vital capacity in supine position (r = 0.88) and postural drop (r = 0.89). While anterior-posterior length ratios also differed between patients and volunteers (p = 0.04), left-right length ratios did not (p = 0.1). CONCLUSIONS: MRI is an innovative tool to visualize diaphragmatic dynamics in Pompe patients and to study chest-walland diaphragmatic movements in more detail. Our data indicate that diaphragmatic displacement may be severely disturbed in patients with Pompe disease.


Assuntos
Diafragma/fisiopatologia , Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Pulmão/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Diafragma/patologia , Expiração , Feminino , Volume Expiratório Forçado , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Inalação , Pulmão/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Espirometria , Capacidade Vital
15.
Pediatr Radiol ; 45(13): 1901-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26342643

RESUMO

Pediatric chest MRI is challenging. High-resolution scans of the lungs and airways are compromised by long imaging times, low lung proton density and motion. Low signal is a problem of normal lung. Lung abnormalities commonly cause increased signal intenstities. Among the most important factors for a successful MRI is patient cooperation, so the long acquisition times make patient preparation crucial. Children usually have problems with long breath-holds and with the concept of quiet breathing. Young children are even more challenging because of higher cardiac and respiratory rates giving motion blurring. For these reasons, CT has often been preferred over MRI for chest pediatric imaging. Despite its drawbacks, MRI also has advantages over CT, which justifies its further development and clinical use. The most important advantage is the absence of ionizing radiation, which allows frequent scanning for short- and long-term follow-up studies of chronic diseases. Moreover, MRI allows assessment of functional aspects of the chest, such as lung perfusion and ventilation, or airways and diaphragm mechanics. In this review, we describe the most common MRI acquisition techniques on the verge of clinical translation, their problems and the possible solutions to make chest MRI feasible in children.


Assuntos
Imageamento por Ressonância Magnética/métodos , Doenças Respiratórias/diagnóstico , Criança , Humanos , Pneumopatias/diagnóstico , Tomografia Computadorizada por Raios X
16.
Eur Respir J ; 43(1): 115-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23598953

RESUMO

Tracheobronchomalacia (TBM) is defined as an excessive collapse of the intrathoracic trachea. Bronchoscopy is the gold standard for diagnosing TBM; however it has major disadvantages, such as general anaesthesia. Cine computed tomography (CT) is a noninvasive alternative used to diagnose TBM, but its use in children is restricted by ionising radiation. Our aim was to evaluate the feasibility of spirometer-controlled cine magnetic resonance imaging (MRI) as an alternative to cine-CT in a retrospective study. 12 children with a mean age (range) of 12 years (7-17 years), suspected of having TBM, underwent cine-MRI. Static scans were acquired at end-inspiration and expiration covering the thorax using a three-dimensional spoiled gradient echo sequence. Three-dimensional dynamic scans were performed covering only the central airways. TBM was defined as a decrease of the trachea or bronchi diameter >50% at end-expiration in the static and dynamic scans. The success rate of the cine-MRI protocol was 92%. Cine-MRI was compared with bronchoscopy or chest CT in seven subjects. TBM was diagnosed by cine-MRI in seven (58%) out of 12 children and was confirmed by bronchoscopy or CT. In four patients, cine-MRI demonstrated tracheal narrowing that was not present in the static scans. Spirometer controlled cine-MRI is a promising technique to assess TBM in children and has the potential to replace bronchoscopy.


Assuntos
Imagem Cinética por Ressonância Magnética/métodos , Traqueobroncomalácia/diagnóstico , Adolescente , Broncoscopia , Criança , Feminino , Humanos , Masculino , Respiração , Estudos Retrospectivos , Espirometria/métodos , Tomografia Computadorizada por Raios X
17.
J Obstet Gynaecol Res ; 40(4): 1051-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24428703

RESUMO

AIM: The aim of this study was to determine whether an optimized 3.0-Tesla magnetic resonance imaging (MRI) protocol is sensitive and specific enough to detect patients with endometriosis. MATERIAL AND METHODS: This was a prospective cohort study with consecutive patients. Forty consecutive patients with clinical suspicion of endometriosis underwent 3.0-Tesla MRI, including a T2-weighted high-resolution fast spin echo sequence (spatial resolution=0.75 ×1.2 ×1.5 mm³) and a 3D T1-weighted high-resolution gradient echo sequence (spatial resolution=0.75 ×1.2 × 2.0 mm³). Two radiologists reviewed the dataset with consensus reading. During laparoscopy, which was used as reference standard, all lesions were characterized according to the revised criteria of the American Fertility Society. Patient-level and region-level sensitivities and specificities and lesion-level sensitivities were calculated. RESULTS: Patient-level sensitivity was 42% for stage I (5/12) and 100% for stages II, III and IV (25/25). Patient-level specificity for all stages was 100% (3/3). The region-level sensitivity and specificity was 63% and 97%, respectively. The sensitivity per lesion was 61% (90% for deep lesions, 48% for superficial lesions and 100% for endometriomata). The detection rate of obliteration of the cul-the-sac was 100% (10/10) with no false positive findings. The interreader agreement was substantial to perfect (kappa=1 per patient, 0.65 per lesion and 0.71 for obliteration of the cul-the-sac). CONCLUSIONS: An optimized 3.0-Tesla MRI protocol is accurate in detecting stage II to stage IV endometriosis.


Assuntos
Endometriose/diagnóstico , Doenças Ovarianas/diagnóstico , Doenças Peritoneais/diagnóstico , Adolescente , Adulto , Estudos de Coortes , Endometriose/fisiopatologia , Endometriose/cirurgia , Feminino , Humanos , Imageamento Tridimensional/instrumentação , Laparoscopia , Imageamento por Ressonância Magnética/instrumentação , Países Baixos , Doenças Ovarianas/fisiopatologia , Doenças Ovarianas/cirurgia , Doenças Peritoneais/fisiopatologia , Doenças Peritoneais/cirurgia , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Imagem Corporal Total , Adulto Jovem
18.
Recent Results Cancer Res ; 187: 3-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23179877

RESUMO

Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias/patologia , Tomografia Computadorizada por Raios X/métodos , Humanos , Neoplasias/diagnóstico por imagem
19.
J Thorac Imaging ; 38(2): 97-103, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482025

RESUMO

PURPOSE: To test respiratory-triggered ultrashort echo-time (UTE) Spiral VIBE-MRI sequence in systemic sclerosis-interstitial lung disease assessment compared with computed tomography (CT). MATERIAL AND METHODS: Fifty four SSc patients underwent chest CT and UTE (1.5 T). Two radiologists, independently and in consensus, verified ILD presence/absence and performed a semiquantitative analysis (sQA) of ILD, ground-glass opacities (GGO), reticulations and honeycombing (HC) extents on both scans. A CT software quantitative texture analysis (QA) was also performed. For ILD detection, intra-/inter-reader agreements were computed with Cohen K coefficient. UTE sensitivity and specificity were assessed. For extent assessments, intra-/inter-reader agreements and UTE performance against CT were computed by Lin's concordance coefficient (CCC). RESULTS: Three UTE were discarded for low quality, 51 subjects were included in the study. Of them, 42 QA segmentations were accepted. ILD was diagnosed in 39/51 CT. UTE intra-/inter-reader K in ILD diagnosis were 0.56 and 0.26. UTE showed 92.8% sensitivity and 75.0% specificity. ILD, GGO, and reticulation extents were 14.8%, 7.7%, and 7.1% on CT sQA and 13.0%, 11.2%, and 1.6% on CT QA. HC was <1% and not further considered. UTE intra-/inter-reader CCC were 0.92 and 0.89 for ILD extent and 0.84 and 0.79 for GGO extent. UTE RET extent intra-/inter-reader CCC were 0.22 and 0.18. UTE ILD and GGO extents CCC against CT sQA and QA were ≥0.93 and ≥0.88, respectively. RET extent CCC were 0.35 and 0.22 against sQA and QA, respectively. CONCLUSION: UTE Spiral VIBE-MRI sequence is reliable in assessing ILD and GGO extents in systemic sclerosis-interstitial lung disease patients.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Sensibilidade e Especificidade , Pulmão
20.
Magn Reson Med ; 68(6): 1983-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22298247

RESUMO

Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA