Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(31): 21737-45, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27435423

RESUMO

Superconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is ΔC/γTc = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol(-1) K(-2) and the Debye temperature ΘD = 157 K. The electron-phonon coupling strength is λel-ph = 0.59, and the thermodynamic critical field Hc is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin-orbit coupling and electronic property anisotropy. We find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.

2.
Phys Rev Lett ; 104(14): 147205, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20481959

RESUMO

Density functional theory was used to study structural and dynamical changes related to the magnetostructural phase transition in MnAs. The soft mode inducing the transition from the high-symmetry hexagonal to the low-symmetry orthorhombic phase was revealed. A giant coupling between the soft mode and magnetic moments was found and its crucial role in the magnetostructural transition was established. The estimated phonon contribution to the total entropy change has the opposite sign to the magnetic entropy change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA