RESUMO
Riparian ecosystems are shaped by interactions among streamflow, plants, and physical processes. Sustaining functioning riparian ecosystems in the face of climate change, growing human demands for water, and increasing water scarcity requires improved understanding of the sensitivity of riparian ecosystems to shifts in flow regimes and associated adaptive management strategies. We applied projected future flow regimes to an ecogeomorphic model of riparian and channel response to evaluate these interactions. We tested the hypothesis that components of the riparian ecosystem vary in their vulnerabilities to shifts in flow attributes and that changes in the representation of functional groups of plants result from interactions between ecological and physical drivers. Using the Yampa and Green Rivers in northwestern Colorado as our test system, we investigated ecogeomorphic response to (1) synthetic flow regimes representing continuous changes from baseline flows; and (2) future flow scenarios that incorporate changing climate, demand, and water-resource projects. For this region, we showed that riparian plant presence, composition, and cover are highly sensitive to the high flows that occur early in the growing season, but that shifts to low flows are also important, especially for determining the functional diversity of a riparian community. Future flow regimes are likely to induce vegetation encroachment on lower channel surfaces and to increase plant cover, which will be dominated by fewer functional groups. In particular, we predict a decrease in some mesic plants (shrubs and tall herbs) and an increase in presence and cover of late-seral, xeric shrubs, most of which are non-native species. Managing for high flows that occur early in the growing season must complement maintenance of adequate baseflows to maintain ecosystem functioning in the face of hydrologic alterations induced by climate change and human water demand.
Assuntos
Ecossistema , Rios , Mudança Climática , Colorado , HidrologiaRESUMO
One of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstream of the former reservoir, within the reservoir, and downstream of the removed dam. Emerging from these models are response trajectories that clarify potential pathways of ecological transitions in each domain. We illustrate that the responses are controlled by multiple causal pathways and feedback loops among physical and biological components of the ecosystem, creating recovery trajectories that are dynamic and nonlinear. In most cases, short-term effects are typically followed by longer-term responses that bring ecosystems to new and frequently predictable ecological condition, which may or may not be similar to what existed prior to impoundment.