Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Am J Physiol Renal Physiol ; 325(1): F38-F49, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102686

RESUMO

The presence of a renal GABA/glutamate system has previously been described; however, its functional significance in the kidney remains undefined. We hypothesized, given its extensive presence in the kidney, that activation of this GABA/glutamate system would elicit a vasoactive response from the renal microvessels. The functional data here demonstrate, for the first time, that activation of endogenous GABA and glutamate receptors in the kidney significantly alters microvessel diameter with important implications for influencing renal blood flow. Renal blood flow is regulated in both the renal cortical and medullary microcirculatory beds via diverse signaling pathways. GABA- and glutamate-mediated effects on renal capillaries are strikingly similar to those central to the regulation of central nervous system capillaries, that is, exposing renal tissue to physiological concentrations of GABA, glutamate, and glycine led to alterations in the way that contractile cells, pericytes, and smooth muscle cells, regulate microvessel diameter in the kidney. Since dysregulated renal blood flow is linked to chronic renal disease, alterations in the renal GABA/glutamate system, possibly through prescription drugs, could significantly impact long-term kidney function.NEW & NOTEWORTHY Functional data here offer novel insight into the vasoactive activity of the renal GABA/glutamate system. These data show that activation of endogenous GABA and glutamate receptors in the kidney significantly alters microvessel diameter. Furthermore, the results show that these antiepileptic drugs are as potentially challenging to the kidney as nonsteroidal anti-inflammatory drugs.


Assuntos
Ácido Glutâmico , Glicina , Ácido Glutâmico/farmacologia , Microcirculação , Glicina/farmacologia , Rim/irrigação sanguínea , Ácido gama-Aminobutírico/farmacologia , Sistema Nervoso Central , Neurotransmissores/farmacologia
2.
J Chem Inf Model ; 63(17): 5513-5528, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625010

RESUMO

Traditional small-molecule drug discovery is a time-consuming and costly endeavor. High-throughput chemical screening can only assess a tiny fraction of drug-like chemical space. The strong predictive power of modern machine-learning methods for virtual chemical screening enables training models on known active and inactive compounds and extrapolating to much larger chemical libraries. However, there has been limited experimental validation of these methods in practical applications on large commercially available or synthesize-on-demand chemical libraries. Through a prospective evaluation with the bacterial protein-protein interaction PriA-SSB, we demonstrate that ligand-based virtual screening can identify many active compounds in large commercial libraries. We use cross-validation to compare different types of supervised learning models and select a random forest (RF) classifier as the best model for this target. When predicting the activity of more than 8 million compounds from Aldrich Market Select, the RF substantially outperforms a naïve baseline based on chemical structure similarity. 48% of the RF's 701 selected compounds are active. The RF model easily scales to score one billion compounds from the synthesize-on-demand Enamine REAL database. We tested 68 chemically diverse top predictions from Enamine REAL and observed 31 hits (46%), including one with an IC50 value of 1.3 µM.


Assuntos
Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Bases de Dados Factuais , Descoberta de Drogas , Aprendizado de Máquina Supervisionado
3.
Biochemistry ; 61(5): 354-366, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143176

RESUMO

Chromatin abnormalities are common hallmarks of cancer cells, which exhibit alterations in DNA methylation profiles that can silence tumor suppressor genes. These epigenetic patterns are partly established and maintained by UHRF1 (ubiquitin-like PHD and RING finger domain-containing protein 1), which senses existing methylation states through multiple reader domains, and reinforces the modifications through recruitment of DNA methyltransferases. Small molecule inhibitors of UHRF1 would be important tools to illuminate molecular functions, yet no compounds capable of blocking UHRF1-histone binding in the context of the full-length protein exist. Here, we report the discovery and mechanism of action of compounds that selectively inhibit the UHRF1-histone interaction with low micromolar potency. Biochemical analyses reveal that these molecules are the first inhibitors to target the PHD finger of UHRF1, specifically disrupting histone H3 arginine 2 interactions with the PHD finger. Importantly, this unique inhibition mechanism is sufficient to displace binding of full-length UHRF1 with histones in vitro and in cells. Together, our study provides insight into the critical role of the PHD finger in driving histone interactions, and demonstrates that targeting this domain through a specific binding pocket is a tractable strategy for UHRF1-histone inhibition.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Histonas , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinogênese , Cromatina , Metilação de DNA , Histonas/metabolismo , Humanos , Ubiquitina-Proteína Ligases/metabolismo
4.
FASEB J ; 34(1): 263-286, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914645

RESUMO

The newly recognized sensory role of bladder urothelium has generated intense interest in identifying its novel sensory molecules. Sensory receptor TRPV4 may serve such function. However, specific and physiologically relevant tissue actions of TRPV4, stretch-independent responses, and underlying mechanisms are unknown and its role in human conditions has not been examined. Here we showed TRPV4 expression in guinea-pig urothelium, suburothelium, and bladder smooth muscle, with urothelial predominance. Selective TRPV4 activation without stretch evoked significant ATP release-key urothelial sensory process, from live mucosa tissue, full-thickness bladder but not smooth muscle, and sustained muscle contractions. ATP release was mediated by Ca2+-dependent, pannexin/connexin-conductive pathway involving protein tyrosine kinase, but independent from vesicular transport and chloride channels. TRPV4 activation generated greater Ca2+ rise than purinergic activation in urothelial cells. There was intrinsic TRPV4 activity without exogeneous stimulus, causing ATP release. TRPV4 contributed to 50% stretch-induced ATP release. TRPV4 activation also triggered superoxide release. TRPV4 expression was increased with aging. Human bladder mucosa presented similarities to guinea pigs. Overactive bladders exhibited greater TRPV4-induced ATP release with age dependence. These data provide the first evidence in humans for the key functional role of TRPV4 in urothelium with specific mechanisms and identify TRPV4 up-regulation in aging and overactive bladders.


Assuntos
Contração Muscular , Músculo Liso , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/fisiologia , Urotélio/fisiologia , Animais , Cálcio/metabolismo , Cobaias , Humanos , Canais de Cátion TRPV/genética
5.
PLoS Comput Biol ; 15(8): e1006813, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381559

RESUMO

Prediction of compounds that are active against a desired biological target is a common step in drug discovery efforts. Virtual screening methods seek some active-enriched fraction of a library for experimental testing. Where data are too scarce to train supervised learning models for compound prioritization, initial screening must provide the necessary data. Commonly, such an initial library is selected on the basis of chemical diversity by some pseudo-random process (for example, the first few plates of a larger library) or by selecting an entire smaller library. These approaches may not produce a sufficient number or diversity of actives. An alternative approach is to select an informer set of screening compounds on the basis of chemogenomic information from previous testing of compounds against a large number of targets. We compare different ways of using chemogenomic data to choose a small informer set of compounds based on previously measured bioactivity data. We develop this Informer-Based-Ranking (IBR) approach using the Published Kinase Inhibitor Sets (PKIS) as the chemogenomic data to select the informer sets. We test the informer compounds on a target that is not part of the chemogenomic data, then predict the activity of the remaining compounds based on the experimental informer data and the chemogenomic data. Through new chemical screening experiments, we demonstrate the utility of IBR strategies in a prospective test on three kinase targets not included in the PKIS.


Assuntos
Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quimioinformática/métodos , Quimioinformática/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Bases de Dados de Compostos Químicos , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/estatística & dados numéricos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Humanos , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Protozoários , Relação Estrutura-Atividade , Interface Usuário-Computador , Proteínas Virais/antagonistas & inibidores
6.
J Chem Inf Model ; 59(1): 282-293, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30500183

RESUMO

Virtual (computational) high-throughput screening provides a strategy for prioritizing compounds for experimental screens, but the choice of virtual screening algorithm depends on the data set and evaluation strategy. We consider a wide range of ligand-based machine learning and docking-based approaches for virtual screening on two protein-protein interactions, PriA-SSB and RMI-FANCM, and present a strategy for choosing which algorithm is best for prospective compound prioritization. Our workflow identifies a random forest as the best algorithm for these targets over more sophisticated neural network-based models. The top 250 predictions from our selected random forest recover 37 of the 54 active compounds from a library of 22,434 new molecules assayed on PriA-SSB. We show that virtual screening methods that perform well on public data sets and synthetic benchmarks, like multi-task neural networks, may not always translate to prospective screening performance on a specific assay of interest.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Algoritmos , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Interface Usuário-Computador
7.
J Chem Inf Model ; 57(7): 1579-1590, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28654262

RESUMO

In structure-based virtual screening, compound ranking through a consensus of scores from a variety of docking programs or scoring functions, rather than ranking by scores from a single program, provides better predictive performance and reduces target performance variability. Here we compare traditional consensus scoring methods with a novel, unsupervised gradient boosting approach. We also observed increased score variation among active ligands and developed a statistical mixture model consensus score based on combining score means and variances. To evaluate performance, we used the common performance metrics ROCAUC and EF1 on 21 benchmark targets from DUD-E. Traditional consensus methods, such as taking the mean of quantile normalized docking scores, outperformed individual docking methods and are more robust to target variation. The mixture model and gradient boosting provided further improvements over the traditional consensus methods. These methods are readily applicable to new targets in academic research and overcome the potentially poor performance of using a single docking method on a new target.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Aprendizado de Máquina , Terapia de Alvo Molecular , Proteínas/metabolismo , Benchmarking , Simulação de Acoplamento Molecular , Interface Usuário-Computador
8.
Am J Physiol Renal Physiol ; 311(4): F805-F816, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27358056

RESUMO

Overactive Bladder (OAB) is an idiopathic condition, characterized by urgency, urinary frequency, and urgency incontinence, in the absence of routinely traceable urinary infection. We have described microscopic pyuria (≥10 wbc/µl) in patients suffering from the worst symptoms. It is established that inflammation is associated with increased ATP release from epithelial cells, and extracellular ATP originating from the urothelium following increased hydrostatic pressure is a mediator of bladder sensation. Here, using bladder biopsy samples, we have investigated urothelial ATP signaling in OAB patients with microscopic pyuria. Basal, but not stretch-evoked, release of ATP was significantly greater from the urothelium of OAB patients with pyuria than from non-OAB patients or OAB patients without pyuria (<10 wbc/µl). Basal ATP release from the urothelium of OAB patients with pyuria was inhibited by the P2 receptor antagonist suramin and abolished by the hemichannel blocker carbenoxolone, which differed from stretch-activated ATP release. Altered P2 receptor expression was evident in the urothelium from pyuric OAB patients. Furthermore, intracellular bacteria were visualized in shed urothelial cells from ∼80% of OAB patients with pyuria. These data suggest that increased ATP release from the urothelium, involving bacterial colonization, may play a role in the heightened symptoms associated with pyuric OAB patients.


Assuntos
Trifosfato de Adenosina/metabolismo , Piúria/metabolismo , Transdução de Sinais/fisiologia , Bexiga Urinária Hiperativa/metabolismo , Urotélio/metabolismo , Carbenoxolona/farmacologia , Feminino , Humanos , Masculino , Antagonistas do Receptor Purinérgico P2/farmacologia , Piúria/complicações , Transdução de Sinais/efeitos dos fármacos , Suramina/farmacologia , Uridina Trifosfato/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/complicações , Urotélio/efeitos dos fármacos
9.
J Biol Chem ; 289(23): 16100-13, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24706759

RESUMO

Pharmacologic HIV protease inhibitors (PIs) and structurally related oligopeptides are known to reversibly bind and inactivate the insulin-responsive facilitative glucose transporter 4 (GLUT4). Several PIs exhibit isoform selectivity with little effect on GLUT1. The ability to target individual GLUT isoforms in an acute and reversible manner provides novel means both to investigate the contribution of individual GLUTs to health and disease and to develop targeted treatment of glucose-dependent diseases. To determine the molecular basis of transport inhibition, a series of chimeric proteins containing transmembrane and cytosolic domains from GLUT1 and GLUT4 and/or point mutations were generated and expressed in HEK293 cells. Structural integrity was confirmed via measurement of N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) labeling of the chimeric proteins in low density microsome fractions isolated from stably transfected 293 cells. Functional integrity was assessed via measurement of zero-trans 2-deoxyglucose (2-DOG) uptake. ATB-BMPA labeling studies and 2-DOG uptake revealed that transmembrane helices 1 and 5 contain amino acid residues that influence inhibitor access to the transporter binding domain. Substitution of Thr-30 and His-160 in GLUT1 to the corresponding positions in GLUT4 is sufficient to completely transform GLUT1 into GLUT4 with respect to indinavir inhibition of 2-DOG uptake and ATB-BMPA binding. These data provide a structural basis for the selectivity of PIs toward GLUT4 over GLUT1 that can be used in ongoing novel drug design.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Inibidores da Protease de HIV/farmacologia , Isoformas de Proteínas/antagonistas & inibidores , Sequência de Aminoácidos , Linhagem Celular , Clonagem Molecular , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Inibidores da Protease de HIV/metabolismo , Humanos , Indinavir/metabolismo , Indinavir/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos
10.
Am J Physiol Renal Physiol ; 309(7): F648-57, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26202223

RESUMO

We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Capilares/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Animais , Bradicinina/farmacologia , Interações Medicamentosas , Técnicas In Vitro , Túbulos Renais/irrigação sanguínea , Túbulos Renais/efeitos dos fármacos , Masculino , Óxido Nítrico/farmacologia , Prostaglandinas/farmacologia , Ratos , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
11.
Bioorg Med Chem ; 23(10): 2328-43, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25882520

RESUMO

Hepatocyte growth factor activator (HGFA), matriptase and hepsin are all S1 trypsin-like serine endopeptidases. HGFA is a plasma protease while hepsin and matriptase are type II transmembrane proteases (TTSPs). Upregulated expression and activity of all three proteases is associated with aberrant cancer cell signaling through c-MET and RON tyrosine kinase cell-signaling pathways in cancer. We modeled known benzamidine protease inhibitor scaffolds into the active sites of matriptase, hepsin and HGFA to design new non-peptide inhibitors of hepsin and HGFA. First, we used a docking model of the irreversible inhibitor, Nafamostat, bound to the active site of HGFA in order to explore structure activity relationships (SAR). Compounds were screened for inhibition of HGFA activity in a kinetic enzyme assay using a chromogenic substrate. Next, we designed matched pair compound libraries of 3-amidino and 4-amidino phenylalanine (benzamidine) arginine peptidomimetics based on the structure of matriptase inhibitor, CJ-672. Compounds were screened for inhibition of HGFA, matriptase, and hepsin enzyme activity using fluorogenic substrates. Using this strategy we have discovered the first reported non-peptide small molecule inhibitors of both HGFA and hepsin. These inhibitors have differential potency and selectivity towards all three proteases. A subset of piperazinyl ureas highlighted by 25a, have excellent potency and selectivity for hepsin over matriptase and HGFA.


Assuntos
Antineoplásicos/síntese química , Benzamidinas/síntese química , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteases/síntese química , Serina Endopeptidases/química , Amidinas/síntese química , Antineoplásicos/farmacologia , Arginina/química , Benzamidinas/farmacologia , Domínio Catalítico , Desenho de Fármacos , Ensaios Enzimáticos , Guanidinas/química , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/química , Peptidomiméticos/química , Fenilalanina/análogos & derivados , Fenilalanina/síntese química , Piperazinas/síntese química , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
12.
BMC Urol ; 15: 7, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25886951

RESUMO

BACKGROUND: Adenosine-5'-triphosphate (ATP) is a neurotransmitter and inflammatory cytokine implicated in the pathophysiology of lower urinary tract disease. ATP additionally reflects microbial biomass thus has potential as a surrogate marker of urinary tract infection (UTI). The optimum clinical sampling method for ATP urinalysis has not been established. We tested the potential of urinary ATP in the assessment of lower urinary tract symptoms, infection and inflammation, and validated sampling methods for clinical practice. METHODS: A prospective, blinded, cross-sectional observational study of adult patients presenting with lower urinary tract symptoms (LUTS) and asymptomatic controls, was conducted between October 2009 and October 2012. Urinary ATP was assayed by a luciferin-luciferase method, pyuria counted by microscopy of fresh unspun urine and symptoms assessed using validated questionnaires. The sample collection, storage and processing methods were also validated. RESULTS: 75 controls and 340 patients with LUTS were grouped as without pyuria (n = 100), pyuria 1-9 wbc µl(-1) (n = 120) and pyuria ≥10 wbc µl(-1) (n = 120). Urinary ATP was higher in association with female gender, voiding symptoms, pyuria greater than 10 wbc µl(-1) and negative MSU culture. ROC curve analysis showed no evidence of diagnostic test potential. The urinary ATP signal decayed with storage at 23°C but was prevented by immediate freezing at ≤ -20°C, without boric acid preservative and without the need to centrifuge urine prior to freezing. CONCLUSIONS: Urinary ATP may have a role as a research tool but is unconvincing as a surrogate, clinical diagnostic marker.


Assuntos
Trifosfato de Adenosina/urina , Sintomas do Trato Urinário Inferior/urina , Infecções Urinárias/urina , Trifosfato de Adenosina/análise , Adulto , Idoso , Biomarcadores/urina , Estudos Transversais , Feminino , Seguimentos , Humanos , Modelos Lineares , Sintomas do Trato Urinário Inferior/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Piúria/fisiopatologia , Piúria/urina , Curva ROC , Valores de Referência , Fatores de Risco , Índice de Gravidade de Doença , Método Simples-Cego , Urinálise , Infecções Urinárias/fisiopatologia
13.
ChemMedChem ; 19(8): e202300648, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38300970

RESUMO

The DNA excision repair protein ERCC1 and the DNA damage sensor protein, XPA are highly overexpressed in patient samples of cisplatin-resistant solid tumors including lung, bladder, ovarian, and testicular cancer. The repair of cisplatin-DNA crosslinks is dependent upon nucleotide excision repair (NER) that is modulated by protein-protein binding interactions of ERCC1, the endonuclease, XPF, and XPA. Thus, inhibition of their function is a potential therapeutic strategy for the selective sensitization of tumors to DNA-damaging platinum-based cancer therapy. Here, we report on new small-molecule antagonists of the ERCC1/XPA protein-protein interaction (PPI) discovered using a high-throughput competitive fluorescence polarization binding assay. We discovered a unique structural class of thiopyridine-3-carbonitrile PPI antagonists that block a truncated XPA polypeptide from binding to ERCC1. Preliminary hit-to-lead studies from compound 1 reveal structure-activity relationships (SAR) and identify lead compound 27 o with an EC50 of 4.7 µM. Furthermore, chemical shift perturbation mapping by NMR confirms that 1 binds within the same site as the truncated XPA67-80 peptide. These novel ERCC1 antagonists are useful chemical biology tools for investigating DNA damage repair pathways and provide a good starting point for medicinal chemistry optimization as therapeutics for sensitizing tumors to DNA damaging agents and overcoming resistance to platinum-based chemotherapy.


Assuntos
Cisplatino , Neoplasias Testiculares , Humanos , Masculino , Cisplatino/farmacologia , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/química , Endonucleases/metabolismo , Peptídeos/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/química , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Feminino
14.
Biochemistry ; 52(42): 7486-99, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24040835

RESUMO

Cholinergic synaptic transmission often requires extremely rapid hydrolysis of acetylcholine by acetylcholinesterase (AChE). AChE is inactivated by organophosphates (OPs) in chemical warfare nerve agents. The resulting accumulation of acetylcholine disrupts cholinergic synaptic transmission and can lead to death. A potential long-term strategy for preventing AChE inactivation by OPs is based on evidence that OPs must pass through a peripheral site or P-site near the mouth of the AChE active site gorge before reacting with a catalytic serine in an acylation site or A-site at the base of the gorge. An ultimate goal of this strategy is to design compounds that bind tightly at or near the P-site and exclude OPs from the active site while interfering minimally with the passage of acetylcholine. However, to target the AChE P-site with ligands and potential drugs that selectively restrict access, much more information must be gathered about the structure-activity relationships of ligands that bind specifically to the P-site. We apply here an inhibitor competition assay that can correctly determine whether an AChE inhibitor binds to the P-site, the A-site, or both sites. We have used this assay to examine three uncharged, natural product inhibitors of AChE, including aflatoxin B1, dihydrotanshinone I, and territrem B. The first two of these inhibitors are predicted by the competition assay to bind selectively to the P-site, while territrem B is predicted to span both the P- and A-sites. These predictions have recently been confirmed by X-ray crystallography. Dihydrotanshinone I, with an observed binding constant (KI) of 750 nM, provides a good lead compound for the development of high-affinity, uncharged inhibitors with specificity for the P-site.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Fenantrenos/farmacologia , Acetilcolina/metabolismo , Acetilcolinesterase/genética , Aflatoxina B1/farmacologia , Sítios de Ligação , Ligação Competitiva , Catálise , Domínio Catalítico , Cristalografia por Raios X , Furanos , Humanos , Hidrólise , Cinética , Modelos Químicos , Piranos/farmacologia , Quinonas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Front Physiol ; 14: 1194803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362447

RESUMO

Introduction: Regardless of initiating cause, renal injury promotes a potent pro-inflammatory environment in the outer medulla and a concomitant sustained decrease in medullary blood flow (MBF). This decline in MBF is believed to be one of the critical events in the pathogenesis of acute kidney injury (AKI), yet the precise cellular mechanism underlying this are still to be fully elucidated. MBF is regulated by contractile pericyte cells that reside on the descending vasa recta (DVR) capillaries, which are the primary source of blood flow to the medulla. Methods: Using the rat and murine live kidney slice models, we investigated the acute effects of key medullary inflammatory mediators TNF-α, IL-1ß, IL-33, IL-18, C3a and C5a on vasa recta pericytes, the effect of AT1-R blocker Losartan on pro-inflammatory mediator activity at vasa recta pericytes, and the effect of 4-hour sustained exposure on immunolabelled NG2+ pericytes. Results and discussion: Exposure of rat and mouse kidney slices to TNF-α, IL-18, IL-33, and C5a demonstrated a real-time pericyte-mediated constriction of DVR. When pro-inflammatory mediators were applied in the presence of Losartan the inflammatory mediator-mediated constriction that had previously been observed was significantly attenuated. When live kidney slices were exposed to inflammatory mediators for 4-h, we noted a significant reduction in the number of NG2+ positive pericytes along vasa recta capillaries in both rat and murine kidney slices. Data collected in this study demonstrate that inflammatory mediators can dysregulate pericytes to constrict DVR diameter and reduce the density of pericytes along vasa recta vessels, further diminishing the regulatory capacity of the capillary network. We postulate that preliminary findings here suggest pericytes play a role in AKI.

16.
Purinergic Signal ; 8(4): 741-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22707011

RESUMO

Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ≥ 98 %). All samples were analyzed following injection (100 µl) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 µm, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Nucleosídeos/urina , Nucleotídeos/urina , Animais , Humanos , Íons/análise , Camundongos , Sensibilidade e Especificidade , Extração em Fase Sólida/métodos
17.
Cells ; 11(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011630

RESUMO

Fragile X syndrome (FXS) is the most common inherited cause of autism and intellectual disability. The majority of FXS cases are caused by transcriptional repression of the FMR1 gene due to epigenetic changes that are not recapitulated in current animal disease models. FXS patient induced pluripotent stem cell (iPSC)-derived gene edited reporter cell lines enable novel strategies to discover reactivators of FMR1 expression in human cells on a much larger scale than previously possible. Here, we describe the workflow using FXS iPSC-derived neural cell lines to conduct a massive, unbiased screen for small molecule activators of the FMR1 gene. The proof-of-principle methodology demonstrates the utility of human stem-cell-based methodology for the untargeted discovery of reactivators of the human FMR1 gene that can be applied to other diseases.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Ensaios de Triagem em Larga Escala , Neurônios/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Loci Gênicos , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Reprodutibilidade dos Testes
18.
Am J Physiol Gastrointest Liver Physiol ; 299(1): G32-42, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20185692

RESUMO

Inflammatory bowel diseases (IBD) are characterized during their active phase by polymorphonuclear leukocyte (PMNL) transepithelial migration. The efflux of PMNL into the mucosa is associated with the production of proinflammatory cytokines and the release of ATP from damaged and necrotic cells. The expression and function of purinergic P2X(7) receptor (P2X(7)R) in intestinal epithelial cells (IEC) and its potential role in the "cross talk" between IEC and PMNL have not been explored. The aims of the present study were 1) to examine P2X(7)R expression in IEC (T84 cells) and in human intestinal biopsies; 2) to detect any changes in P2X(7)R expression in T84 cells during PMNL transepithelial migration, and during the active and quiescent phases of IBD; and 3) to test whether P2X(7)R stimulation in T84 monolayers can induce caspase-1 activation and IL-1beta release by IEC. We found that a functional ATP-sensitive P2X(7)R is constitutively expressed at the apical surface of IEC T84 cells. PMNL transmigration regulates dynamically P2X(7)R expression and alters its distribution from the apical to basolateral surface of IEC during the early phase of PMNL transepithelial migration in vitro. P2X(7)R expression was weak in intestinal biopsies obtained during the active phase of IBD. We show that activation of epithelial P2X(7)R is mandatory for PMNL-induced caspase-1 activation and IL-1beta release by IEC. Overall, these changes in P2X(7)R function may serve to tailor the intensity of the inflammatory response and to prevent IL-1beta overproduction and inflammatory disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Quimiotaxia de Leucócito , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Receptores Purinérgicos P2/metabolismo , Biópsia , Caspase 1/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-1beta/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X7 , Índice de Gravidade de Doença , Fatores de Tempo , Análise Serial de Tecidos
19.
J Am Soc Nephrol ; 20(7): 1480-90, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19423692

RESUMO

Vasopressin regulates water reabsorption in the collecting duct, but extracellular nucleotides modulate this regulation through incompletely understood mechanisms. We investigated these mechanisms using immortalized mouse collecting duct (mpkCCD) cells. Basolateral exposure to dDAVP induced AQP2 localization to the apical membrane, but co-treatment with ATP internalized AQP2. Because plasma membrane-bound P2 receptors (P2R) mediate the effects of extracellular nucleotides, we examined the abundance and localization of P2R in mpkCCD cells. In the absence of dDAVP, P2Y(1) and P2Y(4) receptors localized to the apical membrane, whereas P2X(2), P2X(4), P2X(5), P2X(7), P2Y(2), P2Y(11), and P2Y(12) receptors localized to the cytoplasm. dDAVP induced gene expression of P2X(1), which localized to the apical domain, and led to translocation of P2X(2) and P2Y(2) to the apical and basolateral membranes, respectively. In co-expression experiments, P2R activation decreased membrane AQP2 and AQP2-mediated water permeability in Xenopus oocytes expressing P2X(2), P2Y(2,) or P2Y(4) receptors, but not in oocytes expressing other P2R subtypes. In summary, these data suggest that AQP2-mediated water transport is downregulated not only by basolateral nucleotides, mediated by P2Y(2) receptors, but also by luminal nucleotides, mediated by P2X(2) and/or P2Y(4) receptors.


Assuntos
Aquaporina 2/metabolismo , Túbulos Renais Coletores/metabolismo , Nucleotídeos/fisiologia , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Aquaporina 2/genética , Arginina Vasopressina , Linhagem Celular , Regulação para Baixo , Feminino , Túbulos Renais Coletores/citologia , Camundongos , Modelos Animais , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptores Purinérgicos P2X , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2Y2 , Xenopus laevis
20.
Purinergic Signal ; 5(4): 481-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19306075

RESUMO

Sodium balance determines the extracellular fluid volume and sets arterial blood pressure (BP). Chronically raised BP (hypertension) represents a major health risk in Western societies. The relationship between BP and renal sodium excretion (the pressure/natriuresis relationship) represents the key element in defining the BP homeostatic set point. The renin-angiotensin-aldosterone system (RAAS) makes major adjustments to the rates of renal sodium secretion, but this system works slowly over a period of hours to days. More rapid adjustments can be made by the sympathetic nervous system, although the kidney can function well without sympathetic nerves. Attention has now focussed on regulatory mechanisms within the kidney, including extracellular nucleotides and the P2 receptor system. Here, we discuss how extracellular ATP can control renal sodium excretion by altering the activity of epithelial sodium channels (ENaC) present in the apical membrane of principal cells. There remains considerable controversy over the molecular targets for released ATP, although the P2Y(2) receptor has received much attention. We review the available data and reflect on our own findings in which ATP-activated P2Y and P2X receptors make adjustments to ENaC activity and therefore sodium excretion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA