Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 146(7)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30890572

RESUMO

During embryogenesis, the stringent regulation of Wnt activity is crucial for the morphogenesis of the head and brain. The loss of function of the Wnt inhibitor Dkk1 results in elevated Wnt activity, loss of ectoderm lineage attributes from the anterior epiblast, and the posteriorisation of anterior germ layer tissue towards the mesendoderm. The modulation of Wnt signalling may therefore be crucial for the allocation of epiblast cells to ectoderm progenitors during gastrulation. To test this hypothesis, we examined the lineage characteristics of epiblast stem cells (EpiSCs) that were derived and maintained under different signalling conditions. We showed that suppression of Wnt activity enhanced the ectoderm propensity of the EpiSCs. Neuroectoderm differentiation of these EpiSCs was further empowered by the robust re-activation of Wnt activity. Therefore, during gastrulation, the tuning of the signalling activities that mediate mesendoderm differentiation is instrumental for the acquisition of ectoderm potency in the epiblast.


Assuntos
Diferenciação Celular/fisiologia , Ectoderma/citologia , Camadas Germinativas/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Ectoderma/metabolismo , Gastrulação/genética , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camadas Germinativas/metabolismo , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Nucleic Acids Res ; 48(4): 1828-1842, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31853542

RESUMO

The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved 'trans-omic' datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.


Assuntos
Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Genoma/genética , Camundongos
3.
Dev Biol ; 418(1): 189-203, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27546376

RESUMO

TWIST1, a basic helix-loop-helix transcription factor is essential for the development of cranial mesoderm and cranial neural crest-derived craniofacial structures. We have previously shown that, in the absence of TWIST1, cells within the cranial mesoderm adopt an abnormal epithelial configuration via a process reminiscent of a mesenchymal to epithelial transition (MET). Here, we show by gene expression analysis that loss of TWIST1 in the cranial mesoderm is accompanied by a reduction in the expression of genes that are associated with cell-extracellular matrix interactions and the acquisition of mesenchymal characteristics. By comparing the transcriptional profiles of cranial mesoderm-specific Twist1 loss-of-function mutant and control mouse embryos, we identified a set of genes that are both TWIST1-dependent and predominantly expressed in the mesoderm. ChIP-seq was used to identify TWIST1-binding sites in an in vitro model of a TWIST1-dependent mesenchymal cell state, and the data were combined with the transcriptome data to identify potential target genes. Three direct transcriptional targets of TWIST1 (Ddr2, Pcolce and Tgfbi) were validated by ChIP-PCR using mouse embryonic tissues and by luciferase assays. Our findings reveal that the mesenchymal properties of the cranial mesoderm are likely to be regulated by a network of TWIST1 targets that influences the extracellular matrix and cell-matrix interactions, and collectively they are required for the morphogenesis of the craniofacial structures.


Assuntos
Matriz Extracelular/genética , Mesoderma/crescimento & desenvolvimento , Crista Neural/embriologia , Proteínas Nucleares/genética , Crânio/embriologia , Proteína 1 Relacionada a Twist/genética , Animais , Sítios de Ligação , Diferenciação Celular , Linhagem Celular , Cães , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Madin Darby de Rim Canino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Morfogênese/genética , Proteínas Nucleares/biossíntese , Proteína 1 Relacionada a Twist/biossíntese
4.
Nat Med ; 26(11): 1742-1753, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020650

RESUMO

The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.


Assuntos
Epigenoma/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Transcriptoma/genética , Adolescente , Criança , Pré-Escolar , Metilação de DNA/genética , Feminino , Humanos , Lactente , Masculino , Mutação/genética , Neoplasias/classificação , Neoplasias/patologia , Pediatria , Medicina de Precisão , Fatores de Risco , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
5.
Nat Genet ; 49(8): 1267-1273, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628105

RESUMO

Vectors based on adeno-associated virus type 2 (AAV2) are powerful tools for gene transfer and genome editing applications. The level of interest in this system has recently surged in response to reports of therapeutic efficacy in human clinical trials, most notably for those in patients with hemophilia B (ref. 3). Understandably, a recent report drawing an association between AAV2 integration events and human hepatocellular carcinoma (HCC) has generated controversy about the causal or incidental nature of this association and the implications for AAV vector safety. Here we describe and functionally characterize a previously unknown liver-specific enhancer-promoter element in the wild-type AAV2 genome that is found between the stop codon of the cap gene, which encodes proteins that form the capsid, and the right-hand inverted terminal repeat. This 124-nt sequence is within the 163-nt common insertion region of the AAV genome, which has been implicated in the dysregulation of known HCC driver genes and thus offers added insight into the possible link between AAV integration events and the multifactorial pathogenesis of HCC.


Assuntos
Regiões 3' não Traduzidas , Dependovirus/genética , Elementos Facilitadores Genéticos , Genoma Viral , Fígado/virologia , Regiões Promotoras Genéticas , Animais , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Feminino , Vetores Genéticos/genética , Humanos , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transgenes
6.
Data Brief ; 9: 372-375, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27699189

RESUMO

This article contains data related to the research article entitled "Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance" by Bildsoe et al. (2016) [1]. The data presented here are derived from: (1) a microarray-based comparison of sorted cranial mesoderm (CM) and cranial neural crest (CNC) cells from E9.5 mouse embryos; (2) comparisons of transcription profiles of head tissues from mouse embryos with a CM-specific loss-of-function of Twist1 and control mouse embryos collected at E8.5 and E9.5; (3) ChIP-seq using a TWIST1-specific monoclonal antibody with chromatin extracts from TWIST1-expressing MDCK cells, a model for a TWIST1-dependent mesenchymal state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA