Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Hum Mol Genet ; 31(18): 3095-3106, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35531971

RESUMO

Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Animais , Epigênese Genética , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Sinaptossomos/metabolismo , Transcriptoma/genética
2.
Brain Behav Immun ; 99: 70-82, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543680

RESUMO

Complement is a key component of the immune system with roles in inflammation and host-defence. Here we reveal novel functions of complement pathways impacting on emotional reactivity of potential relevance to the emerging links between complement and risk for psychiatric disorder. We used mouse models to assess the effects of manipulating components of the complement system on emotionality. Mice lacking the complement C3a Receptor (C3aR-/-) demonstrated a selective increase in unconditioned (innate) anxiety whilst mice deficient in the central complement component C3 (C3-/-) showed a selective increase in conditioned (learned) fear. The dissociable behavioural phenotypes were linked to different signalling mechanisms. Effects on innate anxiety were independent of C3a, the canonical ligand for C3aR, consistent with the existence of an alternative ligand mediating innate anxiety, whereas effects on learned fear were due to loss of iC3b/CR3 signalling. Our findings show that specific elements of the complement system and associated signalling pathways contribute differentially to heightened states of anxiety and fear commonly seen in psychopathology.


Assuntos
Complemento C3 , Transtornos Mentais , Receptores de Complemento , Animais , Complemento C3/genética , Complemento C3/metabolismo , Modelos Animais de Doenças , Inflamação , Camundongos , Transdução de Sinais
3.
Mol Psychiatry ; 26(6): 1748-1760, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33597718

RESUMO

Genetic variation in CACNA1C, which encodes the alpha-1 subunit of CaV1.2 L-type voltage-gated calcium channels, is strongly linked to risk for psychiatric disorders including schizophrenia and bipolar disorder. To translate genetics to neurobiological mechanisms and rational therapeutic targets, we investigated the impact of mutations of one copy of Cacna1c on rat cognitive, synaptic and circuit phenotypes implicated by patient studies. We show that rats hemizygous for Cacna1c harbour marked impairments in learning to disregard non-salient stimuli, a behavioural change previously associated with psychosis. This behavioural deficit is accompanied by dys-coordinated network oscillations during learning, pathway-selective disruption of hippocampal synaptic plasticity, attenuated Ca2+ signalling in dendritic spines and decreased signalling through the Extracellular-signal Regulated Kinase (ERK) pathway. Activation of the ERK pathway by a small-molecule agonist of TrkB/TrkC neurotrophin receptors rescued both behavioural and synaptic plasticity deficits in Cacna1c+/- rats. These results map a route through which genetic variation in CACNA1C can disrupt experience-dependent synaptic signalling and circuit activity, culminating in cognitive alterations associated with psychiatric disorders. Our findings highlight targeted activation of neurotrophin signalling pathways with BDNF mimetic drugs as a genetically informed therapeutic approach for rescuing behavioural abnormalities in psychiatric disorder.


Assuntos
Transtorno Bipolar , Esquizofrenia , Animais , Canais de Cálcio Tipo L/genética , Cognição , Humanos , Fatores de Crescimento Neural , Ratos
4.
Hum Mol Genet ; 28(18): 3013-3023, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31087031

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11-q13. In addition to endocrine and developmental issues, PWS presents with behavioural problems including stereotyped behaviour, impulsiveness and cognitive deficits. The PWS genetic interval contains several brain-expressed small nucleolar (sno) RNA species that are subject to genomic imprinting, including snord115 that negatively regulates post-transcriptional modification of the serotonin 2C receptor (5-HT2CR) pre-mRNA potentially leading to a reduction in 5-HT2CR function. Using the imprinting centre deletion mouse model for PWS (PWSICdel) we have previously shown impairments in a number of behaviours, some of which are abnormally sensitive to 5-HT2CR-selective drugs. In the stop-signal reaction time task test of impulsivity, PWSICdel mice showed increased impulsivity relative to wild-type (WT) littermates. Challenge with the selective 5-HT2CR agonist WAY163909 reduced impulsivity in PWSICdel mice but had no effect on WT behaviour. This behavioural dissociation in was also reflected in differential patterns of immunoreactivity of the immediate early gene c-Fos, with a blunted response to the drug in the orbitofrontal cortex of PWSICdel mice, but no difference in c-Fos activation in the nucleus accumbens. These findings suggest specific facets of response inhibition are impaired in PWSICdel mice and that abnormal 5-HT2CR function may mediate this dissociation. These data have implications for our understanding of the aetiology of PWS-related behavioural traits and translational relevance for individuals with PWS who may seek to control appetite with the new obesity treatment 5-HT2CR agonist lorcaserin.


Assuntos
Impressão Genômica , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Deleção de Sequência , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Síndrome de Prader-Willi/diagnóstico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor 5-HT2C de Serotonina/genética , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
5.
Brain Behav Immun ; 98: 136-150, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403734

RESUMO

Adult hippocampal neurogenesis (AHN) is a form of ongoing plasticity in the brain that supports specific aspects of cognition. Disruptions in AHN have been observed in neuropsychiatric conditions presenting with inflammatory components and are associated with impairments in cognition and mood. Recent evidence highlights important roles of the complement system in synaptic plasticity and neurogenesis during neurodevelopment and in acute learning and memory processes. In this work we investigated the impact of the complement C3/C3aR pathway on AHN and its functional implications for AHN-related behaviours. In C3-/- mice, we found increased numbers and accelerated migration of adult born granule cells, indicating that absence of C3 leads to abnormal survival and distribution of adult born neurons. Loss of either C3 or C3aR affected the morphology of immature neurons, reducing morphological complexity, though these effects were more pronounced in the absence of C3aR. We assessed functional impacts of the cellular phenotypes in an operant spatial discrimination task that assayed AHN sensitive behaviours. Again, we observed differences in the effects of manipulating C3 or C3aR, in that whilst C3aR-/- mice showed evidence of enhanced pattern separation abilities, C3-/- mice instead demonstrated impaired behavioural flexibility. Our findings show that C3 and C3aR manipulation have distinct effects on AHN that impact at different stages in the development and maturation of newly born neurons, and that the dissociable cellular phenotypes are associated with specific alterations in AHN-related behaviours.


Assuntos
Complemento C3 , Hipocampo , Animais , Cognição , Complemento C3/genética , Complemento C3/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Neurogênese , Neurônios/metabolismo
6.
Nature ; 469(7331): 534-8, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21270893

RESUMO

Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development, but also postnatal functions including energy homeostasis and behaviour. When the two parental alleles are unequally represented within a social group (when there is sex bias in dispersal and/or variance in reproductive success), imprinted genes may evolve to modulate social behaviour, although so far no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10-deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue-specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus Grb10 is, so far, a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, owing to actions of the two parental alleles in different tissues.


Assuntos
Alelos , Comportamento Animal/fisiologia , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Impressão Genômica/genética , Animais , Sistema Nervoso Central/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Predomínio Social
7.
Eur J Neurosci ; 42(4): 2105-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26040449

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11-q13, the most recognised feature of which is hyperphagia. This is thought to arise as a consequence of abnormalities in both the physiological drive for food and the rewarding properties of food. Although a number of mouse models for PWS exist, the underlying variables dictating maladaptive feeding remain unknown. Here, feeding behaviour in a mouse model in which the imprinting centre (IC) of the syntenic PWS interval has been deleted (PWS(ICdel) mice) is characterised. It is demonstrated that PWS(ICdel) mice show hyperghrelinaemia and increased consumption of food both following overnight fasting and when made more palatable with sucrose. However, hyperphagia in PWS(ICdel) mice was not accompanied by any changes in reactivity to the hedonic properties of palatable food (sucrose or saccharin), as measured by lick-cluster size. Nevertheless, overall consumption by PWS(ICdel) mice for non-caloric saccharin in the licking test was significantly reduced. Combined with converging findings from a continuous reinforcement schedule, these data indicate that PWS(ICdel) mice show a marked heightened sensitivity to the calorific value of food. Overall, these data indicate that any impact of the rewarding properties of food on the hyperphagia seen in PWS(ICdel) mice is driven primarily by calorie content and is unlikely to involve hedonic processes. This has important implications for understanding the neural systems underlying the feeding phenotype of PWS and the contribution of imprinted genes to abnormal feeding behaviour more generally.


Assuntos
Ansiedade/fisiopatologia , Ingestão de Energia/fisiologia , Hiperfagia/etiologia , Motivação/fisiologia , Síndrome de Prader-Willi/complicações , Animais , Apatia/fisiologia , Condicionamento Operante , Modelos Animais de Doenças , Ingestão de Alimentos/genética , Ingestão de Energia/genética , Feminino , Preferências Alimentares/fisiologia , Grelina/sangue , Hiperfagia/genética , Masculino , Camundongos , Camundongos Transgênicos , Motivação/genética , Fenótipo , Síndrome de Prader-Willi/sangue , Síndrome de Prader-Willi/genética
8.
Transl Psychiatry ; 14(1): 256, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876996

RESUMO

Impaired behavioural flexibility is a core feature of neuropsychiatric disorders and is associated with underlying dysfunction of fronto-striatal circuitry. Reduced dosage of Cyfip1 is a risk factor for neuropsychiatric disorder, as evidenced by its involvement in the 15q11.2 (BP1-BP2) copy number variant: deletion carriers are haploinsufficient for CYFIP1 and exhibit a two- to four-fold increased risk of schizophrenia, autism and/or intellectual disability. Here, we model the contributions of Cyfip1 to behavioural flexibility and related fronto-striatal neural network function using a recently developed haploinsufficient, heterozygous knockout rat line. Using multi-site local field potential (LFP) recordings during resting state, we show that Cyfip1 heterozygous rats (Cyfip1+/-) harbor disrupted network activity spanning medial prefrontal cortex, hippocampal CA1 and ventral striatum. In particular, Cyfip1+/- rats showed reduced influence of nucleus accumbens and increased dominance of prefrontal and hippocampal inputs, compared to wildtype controls. Adult Cyfip1+/- rats were able to learn a single cue-response association, yet unable to learn a conditional discrimination task that engages fronto-striatal interactions during flexible pairing of different levers and cue combinations. Together, these results implicate Cyfip1 in development or maintenance of cortico-limbic-striatal network integrity, further supporting the hypothesis that alterations in this circuitry contribute to behavioural inflexibility observed in neuropsychiatric diseases including schizophrenia and autism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Haploinsuficiência , Córtex Pré-Frontal , Esquizofrenia , Animais , Ratos , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Masculino , Proteínas Adaptadoras de Transdução de Sinal/genética , Córtex Pré-Frontal/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Rede Nervosa/fisiopatologia , Comportamento Animal/fisiologia , Corpo Estriado/fisiopatologia , Estriado Ventral/fisiopatologia
9.
Genes Brain Behav ; 22(6): e12865, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705179

RESUMO

Variations in the Dlg2 gene have been linked to increased risk for psychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability, bipolar disorder, attention deficit hyperactivity disorder, and pubertal disorders. Recent studies have reported disrupted brain circuit function and behaviour in models of Dlg2 knockout and haploinsufficiency. Specifically, deficits in hippocampal synaptic plasticity were found in heterozygous Dlg2+/- rats suggesting impacts on hippocampal dependent learning and cognitive flexibility. Here, we tested these predicted effects with a behavioural characterisation of the heterozygous Dlg2+/- rat model. Dlg2+/- rats exhibited a specific, mild impairment in reversal learning in a substrate deterministic bowl-digging reversal learning task. The performance of Dlg2+/- rats in other bowl digging task, visual discrimination and reversal, novel object preference, novel location preference, spontaneous alternation, modified progressive ratio, and novelty-suppressed feeding test were not impaired. These findings suggest that despite altered brain circuit function, behaviour across different domains is relatively intact in Dlg2+/- rats, with the deficits being specific to only one test of cognitive flexibility. The specific behavioural phenotype seen in this Dlg2+/- model may capture features of the clinical presentation associated with variation in the Dlg2 gene.


Assuntos
Guanilato Quinases , Aprendizagem , Proteínas de Membrana , Transtornos Mentais , Humanos , Animais , Ratos , Proteínas de Membrana/genética , Guanilato Quinases/genética , Cognição , Masculino , Feminino , Animais não Endogâmicos , Heterozigoto , Transtornos Mentais/genética , Hipocampo/fisiopatologia
10.
Nat Rev Neurosci ; 8(11): 832-43, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17925812

RESUMO

In a small fraction of mammalian genes--at present estimated at less than 1% of the total--one of the two alleles that is inherited by the offspring is partially or completely switched off. The decision as to which one is silenced depends on which allele was inherited from the mother and which from the father. These idiosyncratic loci are known as imprinted genes, and their existence is an evolutionary enigma, as they effectively nullify the advantages of diploidy. Although they are small in number, these genes have important effects on physiology and behaviour, and many are expressed in the brain. There is increasing evidence that imprinted genes influence brain function and behaviour by affecting neurodevelopmental processes.


Assuntos
Encéfalo/embriologia , Encéfalo/fisiologia , Impressão Genômica , Animais , Humanos
11.
Front Neurosci ; 16: 840266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600620

RESUMO

We now know that the immune system plays a major role in the complex processes underlying brain development throughout the lifespan, carrying out a number of important homeostatic functions under physiological conditions in the absence of pathological inflammation or infection. In particular, complement-mediated synaptic pruning during critical periods of early life may play a key role in shaping brain development and subsequent risk for psychopathology, including neurodevelopmental disorders such as schizophrenia and autism spectrum disorders. However, these disorders vary greatly in their onset, disease course, and prevalence amongst sexes suggesting complex interactions between the immune system, sex and the unique developmental trajectories of circuitries underlying different brain functions which are yet to be fully understood. Perturbations of homeostatic neuroimmune interactions during different critical periods in which regional circuits mature may have a plethora of long-term consequences for psychiatric phenotypes, but at present there is a gap in our understanding of how these mechanisms may impact on the structural and functional changes occurring in the brain at different developmental stages. In this article we will consider the latest developments in the field of complement mediated synaptic pruning where our understanding is beginning to move beyond the visual system where this process was first described, to brain areas and developmental periods of potential relevance to psychiatric disorders.

12.
Genes Brain Behav ; 21(4): e12799, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35118804

RESUMO

Mutations affecting DLG2 are emerging as a genetic risk factor associated with neurodevelopmental psychiatric disorders including schizophrenia, autism spectrum disorder, and bipolar disorder. Discs large homolog 2 (DLG2) is a member of the membrane-associated guanylate kinase protein superfamily of scaffold proteins, a component of the post-synaptic density in excitatory neurons and regulator of synaptic function and plasticity. It remains an important question whether and how haploinsuffiency of DLG2 contributes to impairments in basic behavioural and cognitive functions that may underlie symptomatic domains in patients that cross diagnostic boundaries. Using a heterozygous Dlg2 mouse model we examined the impact of reduced Dlg2 expression on functions commonly impaired in neurodevelopmental psychiatric disorders including motor co-ordination and learning, pre-pulse inhibition and habituation to novel stimuli. The heterozygous Dlg2 mice exhibited behavioural impairments in long-term motor learning and long-term habituation to a novel context, but not motor co-ordination, initial responses to a novel context, PPI of acoustic startle or anxiety. We additionally showed evidence for the reduced regulation of the synaptic plasticity-associated protein cFos in the motor cortex during motor learning. The sensitivity of selective behavioural and cognitive functions, particularly those dependent on synaptic plasticity, to reduced expression of DLG2 give further credence for DLG2 playing a critical role in specific brain functions but also a mechanistic understanding of symptom expression shared across psychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Animais , Ansiedade/genética , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Heterozigoto , Humanos , Proteínas de Membrana , Camundongos , Plasticidade Neuronal , Proteínas Supressoras de Tumor
13.
Biol Psychiatry ; 92(5): 341-361, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35659384

RESUMO

Genomic copy number variants (CNVs) are associated with a high risk of neurodevelopmental disorders. A growing body of genetic studies suggests that these high-risk genetic variants converge in common molecular pathways and that common pathways also exist across clinically distinct disorders, such as schizophrenia and autism spectrum disorder. A key question is how common molecular mechanisms converge into similar clinical outcomes. We review emerging evidence for convergent cognitive and brain phenotypes across distinct CNVs. Multiple CNVs were shown to have similar effects on core sensory, cognitive, and motor traits. Emerging data from multisite neuroimaging studies have provided valuable information on how these CNVs affect brain structure and function. However, most of these studies examined one CNV at a time, making it difficult to fully understand the proportion of shared brain effects. Recent studies have started to combine neuroimaging data from multiple CNV carriers and identified similar brain effects across CNVs. Some early findings also support convergence in CNV animal models. Systems biology, through integration of multilevel data, provides new insights into convergent molecular mechanisms across genetic risk variants (e.g., altered synaptic activity). However, the link between such key molecular mechanisms and convergent psychiatric phenotypes is still unknown. To better understand this link, we need new approaches that integrate human molecular data with neuroimaging, cognitive, and animal model data, while taking into account critical developmental time points. Identifying risk mechanisms across genetic loci can elucidate the pathophysiology of neurodevelopmental disorders and identify new therapeutic targets for cross-disorder applications.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Neuroimagem , Fenótipo
14.
Neuropsychopharmacology ; 47(7): 1367-1378, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35115661

RESUMO

Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/- rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/- rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/- rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention.


Assuntos
Transtorno do Espectro Autista , Guanilato Quinases/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/genética , Proteínas de Membrana/metabolismo , Plasticidade Neuronal/genética , Canais de Potássio/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
15.
Genes Brain Behav ; 21(4): e12797, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075790

RESUMO

Genetic studies implicate disruption to the DLG2 gene in copy number variants as increasing risk for schizophrenia, autism spectrum disorders and intellectual disability. To investigate psychiatric endophenotypes associated with DLG2 haploinsufficiency (and concomitant PSD-93 protein reduction) a novel clinically relevant Dlg2+/- rat was assessed for abnormalities in anxiety, sensorimotor gating, hedonic reactions, social behaviour, and locomotor response to the N-Methyl-D-aspartic acid receptor antagonist phencyclidine. Dlg gene and protein expression were also investigated to assess model validity. Reductions in PSD-93 messenger RNA and protein were observed in the absence of compensation by other related genes or proteins. Behaviourally Dlg2+/- rats show a potentiated locomotor response to phencyclidine, as is typical of psychotic disorder models, in the absence of deficits in the other behavioural phenotypes assessed here. This shows that the behavioural effects of Dlg2 haploinsufficiency may specifically relate to psychosis vulnerability but are subtle, and partially dissimilar to behavioural deficits previously reported in Dlg2+/- mouse models demonstrating issues surrounding the comparison of models with different aetiology and species. Intact performance on many of the behavioural domains assessed here, such as anxiety and reward processing, will remove these as confounds when continuing investigation into this model using more complex cognitive tasks.


Assuntos
Guanilato Quinases , Haploinsuficiência , Esquizofrenia , Proteínas Supressoras de Tumor , Animais , Modelos Animais de Doenças , Guanilato Quinases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Fenciclidina/farmacologia , Ratos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Comportamento Social , Proteínas Supressoras de Tumor/genética
16.
Hum Mol Genet ; 18(12): 2140-8, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19304781

RESUMO

The Prader-Willi syndrome (PWS) genetic interval contains several brain-expressed small nucleolar (sno)RNA species that are subject to genomic imprinting. In vitro studies have shown that one of these snoRNA molecules, h/mbii-52, negatively regulates editing and alternative splicing of the serotonin 2C receptor (5htr2c) pre-RNA. However, the functional consequences of loss of h/mbii-52 and subsequent increased post-transcriptional modification of 5htr2c are unknown. 5HT2CRs are important in controlling aspects of cognition and the cessation of feeding, and disruption of their function may underlie some of the psychiatric and feeding abnormalities seen in PWS. In a mouse model for PWS lacking expression of mbii-52 (PWS-IC+/-), we show an increase in editing, but not alternative splicing, of the 5htr2c pre-RNA. This change in post-transcriptional modification is associated with alterations in a number of 5HT2CR-related behaviours, including impulsive responding, locomotor activity and reactivity to palatable foodstuffs. In a non-5HT2CR-related behaviour, marble burying, loss of mbii-52 was without effect. The specificity of the behavioural effects to changes in 5HT2CR function was further confirmed using drug challenges. These data illustrate, for the first time, the physiological consequences of altered RNA editing of 5htr2c linked to mbii-52 loss that may underlie specific aspects of the complex PWS phenotype and point to an important functional role for this imprinted snoRNA.


Assuntos
Impressão Genômica , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/fisiopatologia , Edição de RNA , RNA Nucleolar Pequeno/genética , Receptor 5-HT2C de Serotonina/genética , Processamento Alternativo , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Prader-Willi/metabolismo , RNA Nucleolar Pequeno/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo
17.
Proc Natl Acad Sci U S A ; 105(11): 4483-8, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18334636

RESUMO

The small GTPase Rac controls cell morphology, gene expression, and reactive oxygen species formation. Manipulations of Rac activity levels in the cerebellum result in motor coordination defects, but activators of Rac in the cerebellum are unknown. P-Rex family guanine-nucleotide exchange factors activate Rac. We show here that, whereas P-Rex1 expression within the brain is widespread, P-Rex2 is specifically expressed in the Purkinje neurons of the cerebellum. We have generated P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice, analyzed their Purkinje cell morphology, and assessed their motor functions in behavior tests. The main dendrite is thinned in Purkinje cells of P-Rex2(-/-) pups and dendrite structure appears disordered in Purkinje cells of adult P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice. P-Rex2(-/-) mice show a mild motor coordination defect that progressively worsens with age and is more pronounced in females than in males. P-Rex1(-/-)/P-Rex2(-/-) mice are ataxic, with reduced basic motor activity and abnormal posture and gait, as well as impaired motor coordination even at a young age. We conclude that P-Rex1 and P-Rex2 are important regulators of Purkinje cell morphology and cerebellar function.


Assuntos
Dendritos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Atividade Motora , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Envelhecimento/fisiologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Fertilidade , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Saúde , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos
18.
Transl Psychiatry ; 11(1): 313, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031371

RESUMO

Genetic risk factors can significantly increase chances of developing psychiatric disorders, but the underlying biological processes through which this risk is effected remain largely unknown. Here we show that haploinsufficiency of Cyfip1, a candidate risk gene present in the pathogenic 15q11.2(BP1-BP2) deletion may impact on psychopathology via abnormalities in cell survival and migration of newborn neurons during postnatal hippocampal neurogenesis. We demonstrate that haploinsufficiency of Cyfip1 leads to increased numbers of adult-born hippocampal neurons due to reduced apoptosis, without altering proliferation. We show this is due to a cell autonomous failure of microglia to induce apoptosis through the secretion of the appropriate factors, a previously undescribed mechanism. Furthermore, we show an abnormal migration of adult-born neurons due to altered Arp2/3 mediated actin dynamics. Together, our findings throw new light on how the genetic risk candidate Cyfip1 may influence the hippocampus, a brain region with strong evidence for involvement in psychopathology.


Assuntos
Transtorno Autístico , Esquizofrenia , Actinas , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Haploinsuficiência , Hipocampo , Humanos , Recém-Nascido , Microglia , Neurogênese/genética , Esquizofrenia/genética
19.
Biol Psychiatry ; 90(5): 307-316, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931204

RESUMO

BACKGROUND: Copy number variations at the 15q11.2 BP1-BP2 locus are present in 0.5%-1.0% of the population, and the deletion is associated with several neurodevelopmental disorders. Previously, we showed a reciprocal effect of 15q11.2 copy number variation on fractional anisotropy, with widespread increases in deletion carriers. We aim to expand these findings using a larger sample of participants (N = 29,166) and higher resolution imaging and by examining the implications for cognitive performance. METHODS: Diffusion tensor imaging measures from participants with no neurological or psychiatric diagnoses were obtained from the UK Biobank database. We compared 15q11.2 BP1-BP2 deletion (n = 102) and duplication (n = 113) carriers to a large cohort of control individuals with no neuropsychiatric copy number variants (n = 28,951). Additionally, we assessed how changes in white matter mediated the association between carrier status and cognitive performance. RESULTS: Deletion carriers showed increases in fractional anisotropy in the internal capsule and cingulum and decreases in the posterior thalamic radiation compared with both duplication carriers and control subjects (who had intermediate values). Compared with control subjects, deletion carriers had lower scores across cognitive tasks, which were partly influenced by white matter. Reduced fractional anisotropy in the posterior thalamic radiation partially contributed to worse cognitive performance in deletion carriers. CONCLUSIONS: These results, together with our previous findings, provide convergent evidence for an effect of 15q11.2 BP1-BP2 on white matter microstructure, this being more pronounced in deletion carriers. Additionally, changes in white matter were found to partially mediate cognitive ability in deletion carriers, providing a link between white matter changes in 15q11.2 BP1-BP2 carriers and cognitive function.


Assuntos
Variações do Número de Cópias de DNA , Substância Branca , Bancos de Espécimes Biológicos , Cognição , Imagem de Tensor de Difusão , Humanos , Reino Unido , Substância Branca/diagnóstico por imagem
20.
Eur J Neurosci ; 31(1): 156-64, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20092561

RESUMO

The genes in the imprinted cluster on human chromosome 15q11-q13 are known to contribute to psychiatric conditions such as schizophrenia and autism. Major disruptions of this interval leading to a lack of paternal allele expression give rise to Prader-Willi syndrome (PWS), a neurodevelopmental disorder with core symptoms of a failure to thrive in infancy and, on emergence from infancy, learning disabilities and over-eating. Individuals with PWS also display a number of behavioural problems and an increased incidence of neuropsychiatric abnormalities, which recent work indicates involve aspects of frontal dysfunction. To begin to examine the contribution of genes in this interval to relevant psychological and behavioural phenotypes, we exploited the imprinting centre (IC) deletion mouse model for PWS (PWS-IC(+/-)) and the five-choice serial reaction time task (5-CSRTT), which is primarily an assay of visuospatial attention and response control that is highly sensitive to frontal manipulations. Locomotor activity, open-field behaviour and sensorimotor gating were also assessed. PWS-IC(+/-) mice displayed reduced locomotor activity, increased acoustic startle responses and decreased prepulse inhibition of startle responses. In the 5-CSRTT, the PWS-IC(+/-) mice showed deficits in discriminative response accuracy, increased correct reaction times and increased omissions. Task manipulations confirmed that these differences were likely to be due to impaired attention. Our data recapitulate several aspects of the PWS clinical condition, including findings consistent with frontal abnormalities, and may indicate novel contributions of the imprinted genes found in 15q11-q13 to behavioural and cognitive function generally.


Assuntos
Transtornos Cognitivos/genética , Comportamento Exploratório , Atividade Motora/genética , Síndrome de Prader-Willi/genética , Animais , Atenção , Peso Corporal , Encéfalo/fisiopatologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Discriminação Psicológica , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/fisiopatologia , Feminino , Impressão Genômica , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Testes Neuropsicológicos , Síndrome de Prader-Willi/fisiopatologia , Síndrome de Prader-Willi/psicologia , Tempo de Reação , Reflexo de Sobressalto/genética , Reflexo de Sobressalto/fisiologia , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA