Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Nat Immunol ; 17(4): 406-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950237

RESUMO

The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.


Assuntos
Citocinas/imunologia , Endotoxemia/imunologia , Metabolismo Energético/imunologia , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Sepse/imunologia , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/imunologia , Aspergilose/metabolismo , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/imunologia , Candidíase Invasiva/metabolismo , Endotoxemia/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Feminino , Glicólise , Humanos , Immunoblotting , Interferon gama/uso terapêutico , Ácido Láctico/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Estudos Prospectivos , Sepse/tratamento farmacológico , Sepse/metabolismo , Transcriptoma , Adulto Jovem
2.
EMBO J ; 42(7): e108533, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36825437

RESUMO

Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.


Assuntos
Mitocôndrias , Proteínas , Humanos , Células HeLa , Substâncias Macromoleculares/metabolismo , Proteínas/metabolismo , Solventes/metabolismo , Mitocôndrias/metabolismo
3.
Lancet ; 397(10269): 112-118, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33357465

RESUMO

BACKGROUND: In patients with aneurysmal subarachnoid haemorrhage, short-term antifibrinolytic therapy with tranexamic acid has been shown to reduce the risk of rebleeding. However, whether this treatment improves clinical outcome is unclear. We investigated whether ultra-early, short-term treatment with tranexamic acid improves clinical outcome at 6 months. METHODS: In this multicentre prospective, randomised, controlled, open-label trial with masked outcome assessment, adult patients with spontaneous CT-proven subarachnoid haemorrhage in eight treatment centres and 16 referring hospitals in the Netherlands were randomly assigned to treatment with tranexamic acid in addition to care as usual (tranexamic acid group) or care as usual only (control group). Tranexamic acid was started immediately after diagnosis in the presenting hospital (1 g bolus, followed by continuous infusion of 1 g every 8 h, terminated immediately before aneurysm treatment, or 24 h after start of the medication, whichever came first). The primary endpoint was clinical outcome at 6 months, assessed by the modified Rankin Scale, dichotomised into a good (0-3) or poor (4-6) clinical outcome. Both primary and safety analyses were according to intention to treat. This trial is registered at ClinicalTrials.gov, NCT02684812. FINDINGS: Between July 24, 2013, and July 29, 2019, we enrolled 955 patients; 480 patients were randomly assigned to tranexamic acid and 475 patients to the control group. In the intention-to-treat analysis, good clinical outcome was observed in 287 (60%) of 475 patients in the tranexamic acid group, and 300 (64%) of 470 patients in the control group (treatment centre adjusted odds ratio 0·86, 95% CI 0·66-1·12). Rebleeding after randomisation and before aneurysm treatment occurred in 49 (10%) patients in the tranexamic acid and in 66 (14%) patients in the control group (odds ratio 0·71, 95% CI 0·48-1·04). Other serious adverse events were comparable between groups. INTERPRETATION: In patients with CT-proven subarachnoid haemorrhage, presumably caused by a ruptured aneurysm, ultra-early, short-term tranexamic acid treatment did not improve clinical outcome at 6 months, as measured by the modified Rankin Scale. FUNDING: Fonds NutsOhra.


Assuntos
Antifibrinolíticos/administração & dosagem , Hemorragia Subaracnóidea/tratamento farmacológico , Ácido Tranexâmico/administração & dosagem , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Estudos Prospectivos , Hemorragia Subaracnóidea/mortalidade , Fatores de Tempo , Resultado do Tratamento
4.
J Med Genet ; 57(1): 23-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494578

RESUMO

BACKGROUND: Idiopathic dilated cardiomyopathy (DCM) is recognised to be a heritable disorder, yet clinical genetic testing does not produce a diagnosis in >50% of paediatric patients. Identifying a genetic cause is crucial because this knowledge can affect management options, cardiac surveillance in relatives and reproductive decision-making. In this study, we sought to identify the underlying genetic defect in a patient born to consanguineous parents with rapidly progressive DCM that led to death in early infancy. METHODS AND RESULTS: Exome sequencing revealed a potentially pathogenic, homozygous missense variant, c.542G>T, p.(Gly181Val), in SOD2. This gene encodes superoxide dismutase 2 (SOD2) or manganese-superoxide dismutase, a mitochondrial matrix protein that scavenges oxygen radicals produced by oxidation-reduction and electron transport reactions occurring in mitochondria via conversion of superoxide anion (O2-·) into H2O2. Measurement of hydroethidine oxidation showed a significant increase in O2-· levels in the patient's skin fibroblasts, as compared with controls, and this was paralleled by reduced catalytic activity of SOD2 in patient fibroblasts and muscle. Lentiviral complementation experiments demonstrated that mitochondrial SOD2 activity could be completely restored on transduction with wild type SOD2. CONCLUSION: Our results provide evidence that defective SOD2 may lead to toxic increases in the levels of damaging oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure and death. We propose SOD2 as a novel nuclear-encoded mitochondrial protein involved in severe human neonatal cardiomyopathy, thus expanding the wide range of genetic factors involved in paediatric cardiomyopathies.


Assuntos
Cardiomiopatia Dilatada/genética , Mutação de Sentido Incorreto , Miocárdio/patologia , Superóxido Dismutase/genética , Sequência de Aminoácidos , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/metabolismo , Sequência Conservada , Análise Mutacional de DNA , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Linhagem , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
5.
J Intensive Care Med ; 35(2): 161-169, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28934895

RESUMO

BACKGROUND: Guidelines on the management of aneurysmal subarachnoid hemorrhage (aSAH) recommend euvolemia, whereas hypervolemia may cause harm. We investigated whether high early fluid input is associated with delayed cerebral ischemia (DCI), and if fluid input can be safely decreased using transpulmonary thermodilution (TPT). METHODS: We retrospectively included aSAH patients treated at an academic intensive care unit (2007-2011; cohort 1) or managed with TPT (2011-2013; cohort 2). Local guidelines recommended fluid input of 3 L daily. More fluids were administered when daily fluid balance fell below +500 mL. In cohort 2, fluid input in high-risk patients was guided by cardiac output measured by TPT per a strict protocol. Associations of fluid input and balance with DCI were analyzed with multivariable logistic regression (cohort 1), and changes in hemodynamic indices after institution of TPT assessed with linear mixed models (cohort 2). RESULTS: Cumulative fluid input 0 to 72 hours after admission was associated with DCI in cohort 1 (n=223; odds ratio [OR] 1.19/L; 95% confidence interval 1.07-1.32), whereas cumulative fluid balance was not. In cohort 2 (23 patients), using TPT fluid input could be decreased from 6.0 ± 1.0 L before to 3.4 ± 0.3 L; P = .012), while preload parameters and consciousness remained stable. CONCLUSION: High early fluid input was associated with DCI. Invasive hemodynamic monitoring was feasible to reduce fluid input while maintaining preload. These results indicate that fluid loading beyond a normal preload occurs, may increase DCI risk, and can be minimized with TPT.


Assuntos
Isquemia Encefálica/induzido quimicamente , Débito Cardíaco/fisiologia , Hidratação/efeitos adversos , Hemorragia Subaracnóidea/terapia , Equilíbrio Hidroeletrolítico/fisiologia , Estudos de Viabilidade , Feminino , Hemodinâmica , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Hemorragia Subaracnóidea/fisiopatologia
6.
Eur Radiol ; 29(11): 5961-5970, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31089848

RESUMO

PURPOSE: In a prospective cohort study, we evaluated the diagnostic accuracy of time-resolved CT angiography (4D-CTA) compared to digital subtraction angiography (DSA) for detecting cranial arteriovenous shunts. MATERIAL AND METHODS: Patients were enrolled if a DSA had been ordered querying either a dural arteriovenous fistula (dAVF) or a cerebral arteriovenous malformation (bAVM). After enrolment, both a DSA and a 4D-CTA were performed. Both studies were evaluated using a standardized form. If a dAVF or bAVM was found, its classification, angioarchitectural details, and treatment options were recorded. RESULTS: Ninety-eight patients were enrolled and 76 full datasets were acquired. DSA demonstrated a shunting lesion in 28 out of 76 cases (prevalence 37%). 4D-CTA demonstrated all but two of these lesions (sensitivity of 93%) and produced one false positive (specificity of 98%). These numbers yielded a positive predictive value (PPV) of 96% and a negative predictive value (NPV) of 96%. Significant doubt regarding the 4D-CTA diagnosis was reported in 6.6% of all cases and both false-negative 4D-CTA results were characterized by such doubt. CONCLUSIONS: 4D-CTA has very high sensitivity and specificity for the detection of intracranial arteriovenous shunts. Based on these results, 4D-CTA may replace DSA imaging as a first modality in the diagnostic workup in a large number of patients suspected of a cranial dAVF or bAVM, especially if there is no doubt regarding the 4D-CTA diagnosis. KEY POINTS: • 4D-CTA was shown to have a high diagnostic accuracy and is an appropriate, less invasive replacement for DSA as a diagnostic tool for cranial arteriovenous shunts in the majority of suspected cases. • Doubt regarding the 4D-CTA result should prompt additional DSA imaging, as it is associated with false negatives. • False-positive 4D-CTA results are rare, but do exist.


Assuntos
Malformações Vasculares do Sistema Nervoso Central/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/normas , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Angiografia Digital/métodos , Anastomose Arteriovenosa/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/métodos , Feminino , Tomografia Computadorizada Quadridimensional/normas , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade
7.
Acta Neurochir (Wien) ; 161(5): 865-870, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30879130

RESUMO

OBJECT: In the past, the accuracy of surface matching has been shown to be disappointing. We aimed to determine whether this had improved over the years by assessing application accuracy of current navigation systems, using either surface matching or point-pair matching. METHODS: Eleven patients, scheduled for intracranial surgery, were included in this study after a power analysis had shown this small number to be sufficient. Prior to surgery, one additional fiducial marker was placed on the scalp, the "target marker," where the entry point of surgery was to be expected. Using one of three different navigation systems, two patient-to-image registration procedures were performed: one based on surface matching and one based on point-pair matching. Each registration procedure was followed by the digitization of the target marker's location, allowing calculation of the target registration error. If the system offered surface matching improvement, this was always used; and for the two systems that routinely offer an estimate of neuronavigation accuracy, this was also recorded. RESULTS: The error in localizing the target marker using point-pair matching or surface matching was respectively 2.49 mm and 5.35 mm, on average (p < 0.001). In those four cases where an attempt was made to improve the surface matching, the error increased to 6.35 mm, on average. For the seven cases where the system estimated accuracy, this estimate did not correlate with target registration error (R2 = 0.04, p = 0.67). CONCLUSION: The accuracy of navigation systems has not improved over the last decade, with surface matching consistently yielding errors that are twice as large as when point-pair matching with adhesive markers is used. These errors are not reliably reflected by the systems own prediction, when offered. These results are important to make an informed choice between image-to-patient registration strategies, depending on the type of surgery at hand.


Assuntos
Adesivos/normas , Marcadores Fiduciais/normas , Neuronavegação/normas , Humanos , Neuronavegação/efeitos adversos , Neuronavegação/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Cirurgia Assistida por Computador/métodos
8.
J Cell Sci ; 129(23): 4411-4423, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793977

RESUMO

Mitochondria play a central role in cellular energy production, and their dysfunction can trigger a compensatory increase in glycolytic flux to sustain cellular ATP levels. Here, we studied the mechanism of this homeostatic phenomenon in C2C12 myoblasts. Acute (30 min) mitoenergetic dysfunction induced by the mitochondrial inhibitors piericidin A and antimycin A stimulated Glut1-mediated glucose uptake without altering Glut1 (also known as SLC2A1) mRNA or plasma membrane levels. The serine/threonine liver kinase B1 (LKB1; also known as STK11) and AMP-activated protein kinase (AMPK) played a central role in this stimulation. In contrast, ataxia-telangiectasia mutated (ATM; a potential AMPK kinase) and hydroethidium (HEt)-oxidizing reactive oxygen species (ROS; increased in piericidin-A- and antimycin-A-treated cells) appeared not to be involved in the stimulation of glucose uptake. Treatment with mitochondrial inhibitors increased NAD+ and NADH levels (associated with a lower NAD+:NADH ratio) but did not affect the level of Glut1 acetylation. Stimulation of glucose uptake was greatly reduced by chemical inhibition of Sirt2 or mTOR-RAPTOR. We propose that mitochondrial dysfunction triggers LKB1-mediated AMPK activation, which stimulates Sirt2 phosphorylation, leading to activation of mTOR-RAPTOR and Glut1-mediated glucose uptake.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glucose/farmacologia , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuína 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antioxidantes/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Regulatória Associada a mTOR
9.
EMBO J ; 32(1): 9-29, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23149385

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Complexos Multienzimáticos/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Fosforilação Oxidativa , Animais , Núcleo Celular/genética , Humanos , Doença de Leigh/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/metabolismo
10.
Biochim Biophys Acta ; 1853(7): 1606-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25827955

RESUMO

Rotenone (ROT) is a widely used inhibitor of complex I (CI), the first complex of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, particularly at high concentrations ROT was also described to display off-target effects. Here we studied how ROT affected in vitro primary murine myotube formation. We demonstrate that myotube formation is specifically inhibited by ROT (10-100nM), but not by piericidin A (PA; 100nM), another CI inhibitor. At 100nM, both ROT and PA fully blocked myoblast oxygen consumption. Knock-down of Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) and, to a lesser extent ROCK1, prevented the ROT-induced inhibition of myotube formation. Moreover, the latter was reversed by inhibiting Raf-1 activity. In contrast, ROT-induced inhibition of myotube formation was not prevented by knock-down of RhoA. Taken together, our results support a model in which ROT reduces primary myotube formation independent of its inhibitory effect on CI-driven mitochondrial ATP production, but via a mechanism primarily involving the Raf-1/ROCK2 pathway.


Assuntos
Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Rotenona/farmacologia , Quinases Associadas a rho/metabolismo , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Células Cultivadas , Feminino , Imunofluorescência , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos
11.
Biochim Biophys Acta ; 1847(6-7): 526-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25687896

RESUMO

Mitochondrial ATP production is mediated by the oxidative phosphorylation (OXPHOS) system, which consists of four multi-subunit complexes (CI-CIV) and the FoF1-ATP synthase (CV). Mitochondrial disorders including Leigh Syndrome often involve CI dysfunction, the pathophysiological consequences of which still remain incompletely understood. Here we combined experimental and computational strategies to gain mechanistic insight into the energy metabolism of isolated skeletal muscle mitochondria from 5-week-old wild-type (WT) and CI-deficient NDUFS4-/- (KO) mice. Enzyme activity measurements in KO mitochondria revealed a reduction of 79% in maximal CI activity (Vmax), which was paralleled by 45-72% increase in Vmax of CII, CIII, CIV and citrate synthase. Mathematical modeling of mitochondrial metabolism predicted that these Vmax changes do not affect the maximal rates of pyruvate (PYR) oxidation and ATP production in KO mitochondria. This prediction was empirically confirmed by flux measurements. In silico analysis further predicted that CI deficiency altered the concentration of intermediate metabolites, modestly increased mitochondrial NADH/NAD+ ratio and stimulated the lower half of the TCA cycle, including CII. Several of the predicted changes were previously observed in experimental models of CI-deficiency. Interestingly, model predictions further suggested that CI deficiency only has major metabolic consequences when its activity decreases below 90% of normal levels, compatible with a biochemical threshold effect. Taken together, our results suggest that mouse skeletal muscle mitochondria possess a substantial CI overcapacity, which minimizes the effects of CI dysfunction on mitochondrial metabolism in this otherwise early fatal mouse model.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Piruvatos/metabolismo , Animais , Biologia Computacional , Complexo I de Transporte de Elétrons/fisiologia , Metabolismo Energético , Doença de Leigh , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Teóricos , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio
12.
Biochim Biophys Acta ; 1852(3): 529-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25536029

RESUMO

Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined how primary human skin fibroblasts adapt to chronic CI inhibition. CI inhibition triggered transient and sustained changes in metabolism, redox homeostasis and mitochondrial (ultra)structure but no cell senescence/death. CI-inhibited cells consumed no oxygen and displayed minor mitochondrial depolarization, reverse-mode action of complex V, a slower proliferation rate and futile mitochondrial biogenesis. Adaptation was neither prevented by antioxidants nor associated with increased PGC1-α/SIRT1/mTOR levels. Survival of CI-inhibited cells was strictly glucose-dependent and accompanied by increased AMPK-α phosphorylation, which occurred without changes in ATP or cytosolic calcium levels. Conversely, cells devoid of AMPK-α died upon CI inhibition. Chronic CI inhibition did not increase mitochondrial superoxide levels or cellular lipid peroxidation and was paralleled by a specific increase in SOD2/GR, whereas SOD1/CAT/Gpx1/Gpx2/Gpx5 levels remained unchanged. Upon hormone stimulation, fully adapted cells displayed aberrant cytosolic and ER calcium handling due to hampered ATP fueling of ER calcium pumps. It is concluded that CI dysfunction triggers an adaptive program that depends on extracellular glucose and AMPK-α. This response avoids cell death by suppressing energy crisis, oxidative stress induction and substantial mitochondrial depolarization.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fibroblastos/enzimologia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estresse Oxidativo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/genética , Animais , Cálcio/metabolismo , Linhagem Celular Transformada , Sobrevivência Celular/genética , Cloretos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Fibroblastos/citologia , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Adv Anat Embryol Cell Biol ; 219: 149-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27207366

RESUMO

Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-content microscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells.


Assuntos
Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Microscopia de Fluorescência/métodos , Mitocôndrias/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/instrumentação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Fluxo de Trabalho
14.
J Inherit Metab Dis ; 39(1): 59-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26310962

RESUMO

We reported before that the minimal alveolar concentration (MAC) of isoflurane is decreased in complex I-deficient mice lacking the NDUFS4 subunit of the respiratory chain (RC) (1.55 and 0.81% at postnatal (PN) 22-25 days and 1.68 and 0.65% at PN 31-34 days for wildtype (WT) and CI-deficient KO, respectively). A more severe respiratory depression was caused by 1.0 MAC isoflurane in KO mice (respiratory rate values of 86 and 45 at PN 22-25 days and 69 and 29 at PN 31-34 days for anesthetized WT and KO, respectively). Here, we address the idea that isoflurane anesthesia causes a much larger decrease in brain mitochondrial ATP production in KO mice thus explaining their increased sensitivity to this anesthetic. Brains from WT and KO mice of the above study were removed immediately after MAC determination at PN 31-34 days and a mitochondria-enriched fraction was prepared. Aliquots were used for measurement of maximal ATP production in the presence of pyruvate, malate, ADP and creatine and, after freeze-thawing, the maximal activity of the individual RC complexes in the presence of complex-specific substrates. CI activity was dramatically decreased in KO, whereas ATP production was decreased by only 26% (p < 0.05). The activities of CII, CIII, and CIV were the same for WT and KO. Isoflurane anesthesia decreased the activity of CI by 30% (p < 0.001) in WT. In sharp contrast, it increased the activity of CII by 37% (p < 0.001) and 50% (p < 0.001) and that of CIII by 37% (p < 0.001) and 40% (p < 0.001) in WT and KO, respectively, whereas it tended to increase that of CIV in both WT and KO. Isoflurane anesthesia increased ATP production by 52 and 69% in WT (p < 0.05) and KO (p < 0.01), respectively. Together these findings indicate that isoflurane anesthesia interferes positively rather than negatively with the ability of CI-deficient mice brain mitochondria to convert their main substrate pyruvate into ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Isoflurano/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Anestesia/métodos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo
15.
Biophys J ; 109(7): 1372-86, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26445438

RESUMO

ATP can be produced in the cytosol by glycolytic conversion of glucose (GLC) into pyruvate. The latter can be metabolized into lactate, which is released by the cell, or taken up by mitochondria to fuel ATP production by the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS) system. Altering the balance between glycolytic and mitochondrial ATP generation is crucial for cell survival during mitoenergetic dysfunction, which is observed in a large variety of human disorders including cancer. To gain insight into the kinetic properties of this adaptive mechanism we determined here how acute (30 min) inhibition of OXPHOS affected cytosolic GLC homeostasis. GLC dynamics were analyzed in single living C2C12 myoblasts expressing the fluorescent biosensor FLII(12)Pglu-700µÎ´6 (FLII). Following in situ FLII calibration, the kinetic properties of GLC uptake (V1) and GLC consumption (V2) were determined independently and used to construct a minimal mathematical model of cytosolic GLC dynamics. After validating the model, it was applied to quantitatively predict V1 and V2 at steady-state (i.e., when V1 = V2 = Vsteady-state) in the absence and presence of OXPHOS inhibitors. Integrating model predictions with experimental data on lactate production, cell volume, and O2 consumption revealed that glycolysis and mitochondria equally contribute to cellular ATP production in control myoblasts. Inhibition of OXPHOS induced a twofold increase in Vsteady-state and glycolytic ATP production flux. Both in the absence and presence of OXPHOS inhibitors, GLC was consumed at near maximal rates, meaning that GLC consumption is rate-limiting under steady-state conditions. Taken together, we demonstrate here that OXPHOS inhibition increases steady-state GLC uptake and consumption in C2C12 myoblasts. This activation fully compensates for the reduction in mitochondrial ATP production, thereby maintaining the balance between cellular ATP supply and demand.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Glucose/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Cinética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia
16.
J Biol Chem ; 289(16): 11293-11303, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24616101

RESUMO

Isoform 3 of the Na(+)-Ca(2+) exchanger (NCX3) is crucial for maintaining intracellular calcium ([Ca(2+)]i) homeostasis in excitable tissues. In this sense NCX3 plays a key role in neuronal excitotoxicity and Ca(2+) extrusion during skeletal muscle relaxation. Alternative splicing generates two variants (NCX3-AC and NCX3-B). Here, we demonstrated that NCX3 variants display a tissue-specific distribution in mice, with NCX3-B as mostly expressed in brain and NCX-AC as predominant in skeletal muscle. Using Fura-2-based Ca(2+) imaging, we measured the capacity and regulation of the two variants during Ca(2+) extrusion and uptake in different conditions. Functional studies revealed that, although both variants are activated by intracellular sodium ([Na(+)]i), NCX3-AC has a higher [Na(+)]i sensitivity, as Ca(2+) influx is observed in the presence of extracellular Na(+). This effect could be partially mimicked for NCX3-B by mutating several glutamate residues in its cytoplasmic loop. In addition, NCX3-AC displayed a higher capacity of both Ca(2+) extrusion and uptake compared with NCX3-B, together with an increased sensitivity to intracellular Ca(2+). Strikingly, substitution of Glu(580) in NCX3-B with its NCX3-AC equivalent Lys(580) recapitulated the functional properties of NCX3-AC regarding Ca(2+) sensitivity, Lys(580) presumably acting through a structure stabilization of the Ca(2+) binding site. The higher Ca(2+) uptake capacity of NCX3-AC compared with NCX3-B is in line with the necessity to restore Ca(2+) levels in the sarcoplasmic reticulum during prolonged exercise. The latter result, consistent with the high expression in the slow-twitch muscle, suggests that this variant may contribute to the Ca(2+) handling beyond that of extruding Ca(2+).


Assuntos
Encéfalo/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Processamento Alternativo/fisiologia , Substituição de Aminoácidos , Animais , Encéfalo/citologia , Cálcio/metabolismo , Células HEK293 , Humanos , Camundongos , Fibras Musculares de Contração Lenta/citologia , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/genética
17.
Biochim Biophys Acta ; 1837(8): 1247-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24769419

RESUMO

The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI-CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Δψ depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24h) CI inhibition in HEK293 cells induces a proton-based Δψ hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and prevented by co-inhibition of CII, CIII or CIV activity. In contrast, chronic CIII inhibition triggered CV reverse-mode action and induced Δψ depolarization. CI- and CIII-inhibition similarly reduced free matrix ATP levels and increased the cell's dependence on extracellular glucose to maintain cytosolic free ATP. Our findings support a model in which Δψ hyperpolarization in CI-inhibited cells results from low activity of CII, CIII and CIV, combined with reduced forward action of CV and ANT.


Assuntos
Respiração Celular/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Células HEK293 , Humanos , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/genética , Membranas Mitocondriais/química , Fosforilação Oxidativa
18.
Hum Mol Genet ; 22(4): 656-67, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23125284

RESUMO

The mitochondrial respiratory chain complex IV (cytochrome c oxidase) is a multi-subunit enzyme that transfers electrons from cytochrome c to molecular oxygen, yielding water. Its biogenesis requires concerted expression of mitochondria- and nuclear-encoded subunits and assembly factors. In this report, we describe a homozygous missense mutation in FAM36A from a patient who displays ataxia and muscle hypotonia. The FAM36A gene is a remote, putative ortholog of the fungal complex IV assembly factor COX20. Messenger RNA (mRNA) and protein co-expression analyses support the involvement of FAM36A in complex IV function in mammals. The c.154A>C mutation in the FAM36A gene, a mutation that is absent in sequenced exomes, leads to a reduced activity and lower levels of complex IV and its protein subunits. The FAM36A protein is nearly absent in patient's fibroblasts. Cells affected by the mutation accumulate subassemblies of complex IV that contain COX1 but are almost devoid of COX2 protein. We observe co-purification of FAM36A and COX2 proteins, supporting that the FAM36A defect hampers the early step of complex IV assembly at the incorporation of the COX2 subunit. Lentiviral complementation of patient's fibroblasts with wild-type FAM36A increases the complex IV activity as well as the amount of holocomplex IV and of individual subunits. These results establish the function of the human gene FAM36A/COX20 in complex IV assembly and support a causal role of the gene in complex IV deficiency.


Assuntos
Anormalidades Múltiplas/genética , Ataxia/genética , Deficiência de Citocromo-c Oxidase/genética , Canais Iônicos/genética , Hipotonia Muscular/genética , Multimerização Proteica , Anormalidades Múltiplas/metabolismo , Sequência de Aminoácidos , Animais , Ataxia/metabolismo , Sequência de Bases , Células Cultivadas , Criança , Consanguinidade , Deficiência de Citocromo-c Oxidase/metabolismo , Análise Mutacional de DNA , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Expressão Gênica , Humanos , Canais Iônicos/metabolismo , Ácido Láctico/sangue , Ácido Láctico/líquido cefalorraquidiano , Masculino , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Hipotonia Muscular/metabolismo , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/genética
19.
Arch Toxicol ; 89(8): 1209-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26047665

RESUMO

Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans.


Assuntos
Glucose/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos
20.
Hum Mol Genet ; 21(1): 115-20, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21965299

RESUMO

Mitochondrial complex I (CI) is a multi-subunit enzyme that forms the major entry point of nicotinamide adenine dinucleotide (NADH) electrons into the respiratory chain. Mutations in the NDUFS4 gene, encoding an accessory subunit of this complex, cause a Leigh-like phenotype in humans. To study the nature and penetrance of the CI defect in different tissues, we investigated the role of NDUFS4 in mice with fatal mitochondrial encephalomyopathy, caused by a systemic inactivation of the Ndufs4 gene. We report that the absence of NDUFS4 in different mouse tissues results in decreased activity and stability of CI. This CI instability leads to an increased disconnection of electron influx of the NADH dehydrogenase module from the holo-complex. However, the formation of respiratory supercomplexes still allows formation of active CI in these Ndufs4 knock-out mice. These results reveal the importance of these supramolecular interactions not only for stabilization but also for the assembly of CI, which becomes especially relevant in pathological conditions.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Encefalomiopatias Mitocondriais/enzimologia , Animais , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/química , Encefalomiopatias Mitocondriais/genética , Ligação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA