Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Immunity ; 40(1): 40-50, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24412616

RESUMO

Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was strictly dependent on interleukin-6 (IL-6). Repeat inflammation induced IL-6-mediated T helper 1 (Th1) cell effector commitment and the emergence of STAT1 (signal transducer and activator of transcription-1) activity within the peritoneal membrane. Fibrosis was not observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1. Here, IFN-γ and STAT1 signaling disrupted the turnover of extracellular matrix by metalloproteases. Whereas IL-6-deficient mice resisted fibrosis, transfer of polarized Th1 cells or inhibition of MMP activity reversed this outcome. Thus, IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation.


Assuntos
Interleucina-6/metabolismo , Peritônio/patologia , Peritonite/genética , Peritonite/patologia , Células Th1/imunologia , Doença Aguda , Transferência Adotiva , Animais , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Matriz Extracelular/imunologia , Retroalimentação Fisiológica , Fibrose , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Células Th1/transplante
2.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501963

RESUMO

Composite polymers have become widely used in industries such as the aerospace, automobile, and civil construction industries. Continuous monitoring is essential to optimize the composite components' performance and durability. This paper describes the concept of a distributed fiber optic smart textile (DFOST) embedded into a composite panel that can be implemented during the fabrication process of bridges, planes, or vehicles without damaging the integrity of the composite. The smart textile used an embroidery method to create DFOST for easy installation between composite laminates. It also allows different layout patterns to provide two- or three-dimensional measurements. The DFOST system can then measure strain, temperature, and displacement changes, providing critical information for structural assessment. The DFOST was interrogated by using an optical frequency domain reflectometry (OFDR). It could measure strain variation during the dynamic and static test with a spatial resolution of 2 mm and a minimum strain resolution of 10 µÏµ. This paper focuses on the study of strain measurement.

3.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32601072

RESUMO

The Pseudomonas aeruginosa type III secretion system (T3SS) needle comprised of multiple PscF subunits is essential for the translocation of effector toxins into human cells, facilitating the establishment and dissemination of infection. Mutations in the pscF gene provide resistance to the phenoxyacetamide (PhA) series of T3SS inhibitory chemical probes. To better understand PscF functions and interactions with PhA, alleles of pscF with 71 single mutations altering 49 of the 85 residues of the encoded protein were evaluated for their effects on T3SS phenotypes. Of these, 37% eliminated and 63% maintained secretion, with representatives of both evenly distributed across the entire protein. Mutations in 14 codons conferred a degree of PhA resistance without eliminating secretion, and all but one were in the alpha-helical C-terminal 25% of PscF. PhA-resistant mutants exhibited no cross-resistance to two T3SS inhibitors with different chemical scaffolds. Two mutations caused constitutive T3SS secretion. The pscF allele at its native locus, whether wild type (WT), constitutive, or PhA resistant, was dominant over other pscF alleles expressed from nonnative loci and promoters, but mixed phenotypes were observed in chromosomal ΔpscF strains with both WT and mutant alleles at nonnative loci. Some PhA-resistant mutants exhibited reduced translocation efficiency that was improved in a PhA dose-dependent manner, suggesting that PhA can bind to those resistant needles. In summary, these results are consistent with a direct interaction between PhA inhibitors and the T3SS needle, suggest a mechanism of blocking conformational changes, and demonstrate that PscF affects T3SS regulation, as well as carrying out secretion and translocation.IMPORTANCEP. aeruginosa effector toxin translocation into host innate immune cells is critical for the establishment and dissemination of P. aeruginosa infections. The medical need for new anti-P. aeruginosa agents is evident by the fact that P. aeruginosa ventilator-associated pneumonia is associated with a high mortality rate (40 to 69%) and recurs in >30% of patients, even with standard-of-care antibiotic therapy. The results described here confirm roles for the PscF needle in T3SS secretion and translocation and suggest that it affects regulation, possibly by interaction with T3SS regulatory proteins. The results also support a model of direct interaction of the needle with PhA and suggest that, with further development, members of the PhA series may prove useful as drugs for P. aeruginosa infection.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Sistemas de Secreção Tipo III/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Fenoxiacetatos/farmacologia , Pseudomonas aeruginosa/genética , Relação Estrutura-Atividade
4.
Nephrol Dial Transplant ; 35(8): 1361-1369, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377810

RESUMO

BACKGROUND: This study examined the impact of recurrent episodes of acute kidney injury (AKI) on patient outcomes. METHODS: The Welsh National electronic AKI reporting system was used to identify all cases of AKI in patients ≥18 years of age between April 2015 and September 2018. Patients were grouped according to the number of AKI episodes they experienced with each patient's first episode described as their index episode. We compared the demography and patient outcomes of those patients with a single AKI episode with those patients with multiple AKI episodes. Analysis included 153 776 AKI episodes in 111 528 patients. RESULTS: Of those who experienced AKI and survived their index episode, 29.3% experienced a second episode, 9.9% a third episode and 4.0% experienced fourth or more episodes. Thirty-day mortality for those patients with multiple episodes of AKI was significantly higher than for those patients with a single episode (31.3% versus 24.9%, P < 0.001). Following a single episode, recovery to baseline renal function at 30 days was achieved in 83.6% of patients and was significantly higher than for patients who had repeated episodes (77.8%, P < 0.001). For surviving patients, non-recovery of renal function following any AKI episode was significantly associated with a higher probability of a further AKI episode (33.4% versus 41.0%, P < 0.001). Furthermore, with each episode of AKI the likelihood of a subsequent episode also increased (31.0% versus 43.2% versus 51.2% versus 51.7% following a first, second, third and fourth episode, P < 0.001 for all comparisons). CONCLUSIONS: The results of this study provide an important contribution to the debate regarding the need for risk stratification for recurrent AKI. The data suggest that such a tool would be useful given the poor patient and renal outcomes associated with recurrent AKI episodes as highlighted by this study.


Assuntos
Injúria Renal Aguda/epidemiologia , Rim/fisiopatologia , Índice de Gravidade de Doença , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Idoso , Estudos de Coortes , Feminino , Humanos , Incidência , Masculino , Recidiva , Fatores de Risco , Reino Unido/epidemiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31332074

RESUMO

To determine the mechanism of action of third-generation methylenecyclopropane nucleoside analogs (MCPNAs), DNA sequencing of herpes simplex virus 1 (HSV-1) isolates resistant to third-generation MCPNAs resulted in the discovery of G841S and N815S mutations in HSV-1 UL30. Purified HSV-1 UL30 or human cytomegalovirus (HCMV) UL54 was then subjected to increasing concentrations of MBX-2168-triphosphate (TP), with results demonstrating a 50% inhibitory concentration (IC50) of ∼200 µM, indicating that MBX-2168-TP does not inhibit the viral DNA polymerase. Further metabolic studies showed the removal of a moiety on the guanine ring of MBX-2168. Therefore, we hypothesized that enzymatic removal of a moiety at the 6-position of the guanine ring of third-generation MCPNAs is an essential step in activation. To test this hypothesis, pentostatin (deoxycoformycin [dCF]), an adenosine deaminase-like protein 1 (ADAL-1) inhibitor, was coincubated with MBX-2168. The results showed that dCF antagonized the effect of MBX-2168, with a >40-fold increase in the 50% effective concentration (EC50) at 50 µM dCF (EC50 of 63.1 ± 8.7 µM), compared with MBX-2168 alone (EC50 of 0.2 ± 0.1 µM). Purified ADAL-1 demonstrated time-dependent removal of the moiety on the guanine ring of MBX-2168-monophosphate (MP), with a Km of 17.5 ± 2.4 µM and a Vmax of 0.12 ± 0.04 nmol min-1 Finally, synguanol-TP demonstrated concentration-dependent inhibition of HSV-1 UL30 and HCMV UL54, with IC50s of 0.33 ± 0.16 and 0.38 ± 0.11 µM, respectively. We conclude that ADAL-1 is the enzyme responsible for removing the moiety from the guanine ring of MBX-2168-MP prior to conversion to a TP, the active compound that inhibits the viral DNA polymerase.


Assuntos
Adenosina Desaminase/metabolismo , Ciclopropanos/química , Ciclopropanos/farmacologia , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Adenosina Desaminase/genética , Animais , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/patogenicidade , DNA Viral/genética , Guanina/análogos & derivados , Guanina/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/patogenicidade , Humanos , Análise de Sequência de DNA/métodos , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética , Replicação Viral/fisiologia
6.
Kidney Int ; 92(2): 432-439, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28483379

RESUMO

A prospective national cohort study was undertaken to collect data on all cases of pediatric (under 18 yrs of age) acute kidney injury (AKI) identified by a biochemistry-based electronic alert using the Welsh National electronic AKI reporting system. Herein we describe the utility and limitation of using this modification of the KDIGO creatinine-based system data set to characterize pediatric AKI. Of 1,343 incident episodes over a 30-month period, 34.5% occurred in neonates of which 83.8% were AKI stage 1. Neonatal 30-day mortality was 4.1%, with 73.3% of this being accounted for by patients treated in an Intensive Care Unit. In the non-neonatal group, 76.1% were AKI stage 1. Hospital-acquired AKI accounted for 40.1% of episodes while community-acquired AKI represented 29.4% of cases within which 33.9% were admitted to hospital and 30.5% of cases were unclassified. Non-neonatal 30-day mortality was 1.2%, with half of this accounted for by patients treated in the Intensive Care Unit. Nonrecovery of renal function at 30 days occurred in 28% and was significantly higher in patients not admitted to hospital (45% vs. 20%). The reported incidence of AKI in children was far greater than previously reported in studies reliant on clinical identification of adult AKI or hospital coding data. Mortality was highest in neonates and driven by those in the Intensive Care Unit. Nonrecovery of renal function and persistent renal impairment was more common in non-neonates and was especially high in patients with community-acquired AKI who were not hospitalized.


Assuntos
Injúria Renal Aguda/diagnóstico , Creatinina/sangue , Valores Críticos Laboratoriais , Injúria Renal Aguda/sangue , Injúria Renal Aguda/mortalidade , Adolescente , Biomarcadores/sangue , Criança , Pré-Escolar , Registros Eletrônicos de Saúde , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pediatria/normas , Estudos Prospectivos , País de Gales/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-28807906

RESUMO

Pseudomonas aeruginosa is a leading cause of intra-abdominal infections, wound infections, and community-acquired folliculitis, each of which may involve macro- or microabscess formation. The rising incidence of multidrug resistance among P. aeruginosa isolates has increased both the economic burden and the morbidity and mortality associated with P. aeruginosa disease and necessitates a search for novel therapeutics. Previous work from our group detailed novel phenoxyacetamide inhibitors that block type III secretion and injection into host cells in vitro In this study, we used a mouse model of P. aeruginosa abscess formation to test the in vivo efficacy of these compounds against the P. aeruginosa type III secretion system (T3SS). Bacteria used the T3SS to intoxicate infiltrating neutrophils to establish abscesses. Despite this antagonism, sufficient numbers of functioning neutrophils remained for proper containment of the abscesses, as neutrophil depletion resulted in an increased abscess size, the formation of dermonecrotic lesions on the skin, and the dissemination of P. aeruginosa to internal organs. Consistent with the specificity of the T3SS-neutrophil interaction, P. aeruginosa bacteria lacking a functional T3SS were fully capable of causing abscesses in a neutropenic host. Phenoxyacetamide inhibitors attenuated abscess formation and aided in the immune clearance of the bacteria. Finally, a P. aeruginosa strain resistant to the phenoxyacetamide compound was fully capable of causing abscess formation even in the presence of the T3SS inhibitors. Together, our results further define the role of type III secretion in murine abscess formation and demonstrate the in vivo efficacy of phenoxyacetamide inhibitors in P. aeruginosa infection.


Assuntos
Abscesso/microbiologia , Antibacterianos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Abscesso/tratamento farmacológico , Abscesso/patologia , Animais , Antibacterianos/química , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos C57BL , Neutropenia/microbiologia , Neutrófilos/patologia , Fenoxiacetatos/química , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Sistemas de Secreção Tipo III , Fatores de Virulência/metabolismo
8.
J Virol ; 90(23): 10715-10727, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654292

RESUMO

Cytomegalovirus (CMV) is a ubiquitous human pathogen that increases the morbidity and mortality of immunocompromised individuals. The current FDA-approved treatments for CMV infection are intended to be virus specific, yet they have significant adverse side effects, including nephrotoxicity and hematological toxicity. Thus, there is a medical need for safer and more effective CMV therapeutics. Using a high-content screen, we identified the cardiac glycoside convallatoxin as an effective compound that inhibits CMV infection. Using a panel of cardiac glycoside variants, we assessed the structural elements critical for anti-CMV activity by both experimental and in silico methods. Analysis of the antiviral effects, toxicities, and pharmacodynamics of different variants of cardiac glycosides identified the mechanism of inhibition as reduction of methionine import, leading to decreased immediate-early gene translation without significant toxicity. Also, convallatoxin was found to dramatically reduce the proliferation of clinical CMV strains, implying that its mechanism of action is an effective strategy to block CMV dissemination. Our study has uncovered the mechanism and structural elements of convallatoxin, which are important for effectively inhibiting CMV infection by targeting the expression of immediate-early genes. IMPORTANCE: Cytomegalovirus is a highly prevalent virus capable of causing severe disease in certain populations. The current FDA-approved therapeutics all target the same stage of the viral life cycle and induce toxicity and viral resistance. We identified convallatoxin, a novel cell-targeting antiviral that inhibits CMV infection by decreasing the synthesis of viral proteins. At doses low enough for cells to tolerate, convallatoxin was able to inhibit primary isolates of CMV, including those resistant to the anti-CMV drug ganciclovir. In addition to identifying convallatoxin as a novel antiviral, limiting mRNA translation has a dramatic impact on CMV infection and proliferation.


Assuntos
Antivirais/farmacologia , Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/efeitos dos fármacos , Metionina/metabolismo , Estrofantinas/farmacologia , Antivirais/química , Transporte Biológico Ativo/efeitos dos fármacos , Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/farmacologia , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Genes Precoces/efeitos dos fármacos , Genes Virais/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Estrofantinas/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
9.
Int J Clin Pract ; 71(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28869717

RESUMO

OBJECTIVES: To identify any seasonal variation in the occurrence of, and outcome following Acute Kidney Injury. METHODS: The study utilised the biochemistry based AKI electronic (e)-alert system established across the Welsh National Health Service to collect data on all AKI episodes to identify changes in incidence and outcome over one calendar year (1st October 2015 and the 30th September 2016). RESULTS: There were total of 48 457 incident AKI alerts. The highest proportion of AKI episodes was seen in the quarter of January to March (26.2%), and the lowest in the quarter of October to December (23.3%, P < .001). The same trend was seen for both community-acquired and hospital-acquired AKI sub-sets. Overall 90 day mortality for all AKI was 27.3%. In contrast with the seasonal trend in AKI occurrence, 90 day mortality after the incident AKI alert was significantly higher in the quarters of January to March and October to December compared with the quarters of April to June and July to September (P < .001) consistent with excess winter mortality reported for likely underlying diseases which precipitate AKI. CONCLUSIONS: In summary we report for the first time in a large national cohort, a seasonal variation in the incidence and outcomes of AKI. The results demonstrate distinct trends in the incidence and outcome of AKI.


Assuntos
Injúria Renal Aguda/epidemiologia , Estações do Ano , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , País de Gales/epidemiologia , Adulto Jovem
10.
Antimicrob Agents Chemother ; 60(12): 7067-7076, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620482

RESUMO

We previously reported the synthesis and biological activity of a series of cationic bis-indoles with potent, broad-spectrum antibacterial properties. Here, we describe mechanism of action studies to test the hypothesis that these compounds bind to DNA and that this target plays an important role in their antibacterial outcome. The results reported here indicate that the bis-indoles bind selectively to DNA at A/T-rich sites, which is correlated with the inhibition of DNA and RNA synthesis in representative Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) organisms. Further, exposure of E. coli and S. aureus to representative bis-indoles resulted in induction of the DNA damage-inducible SOS response. In addition, the bis-indoles were found to be potent inhibitors of cell wall biosynthesis; however, they do not induce the cell wall stress stimulon in S. aureus, suggesting that this pathway is inhibited by an indirect mechanism. In light of these findings, the most likely basis for the observed activities of these compounds is their ability to bind to the minor groove of DNA, resulting in the inhibition of DNA and RNA synthesis and other secondary effects.


Assuntos
Antibacterianos/farmacologia , DNA/metabolismo , Indóis/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Escherichia coli/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Humanos , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/farmacologia , Indóis/química , Indóis/metabolismo , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Terapia de Alvo Molecular , Resposta SOS em Genética/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
11.
Eur Biophys J ; 45(8): 843-852, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27480285

RESUMO

Black lipid membranes (BLMs) have been used for detecting single-channel activities of pore-forming peptides and ion channels. However, the short lifetimes and poor mechanical stability of suspended bilayers limit their applications in high throughput electrophysiological experiments. In this work, we present a synthetic solid-state nanopore functionalized with BLM fused with channel protein. A nanopore with diameter of ~180 nm was electrochemically fabricated in a thin silicon membrane. Folding and painting techniques were demonstrated for production of stable suspended BLMs followed by incorporation of transmembrane protein, ENaC. Membrane formation was confirmed by employing electrochemical impedance spectroscopy (EIS) in the frequency regime of 10-2-105 Hz. Results show that electrochemically fabricated solid state nanopore support resulted in excellent membrane stability, with >1 GΩ of up to 72 and 41 h for painting and folding techniques, respectively. After fusion of ENaC channel protein, the BLM exhibits the stability of ~5 h. We anticipate that such a solid-state nanopore with diameter in the range of 150-200 nm and thickness <1 µm could be a potential platform to enhance the throughput of ion-channel characterization using BLMs.


Assuntos
Membrana Celular/química , Canais Epiteliais de Sódio/química , Nanoporos , Técnicas Biossensoriais , Espectroscopia Dielétrica
12.
J Infect Dis ; 212 Suppl 2: S425-34, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26206510

RESUMO

BACKGROUND: The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. METHODS: To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus-based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. RESULTS: We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP-Niemann-Pick C1 (NPC1) protein interaction. CONCLUSIONS: We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Chlorocebus aethiops , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Ligação Proteica/efeitos dos fármacos , Células Vero , Internalização do Vírus/efeitos dos fármacos
13.
Antimicrob Agents Chemother ; 59(9): 5775-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169404

RESUMO

Novel, cellular, gain-of-signal, bioluminescent reporter assays for fatty acid synthesis type II (FASII) inhibitors were constructed in an efflux-deficient strain of Pseudomonas aeruginosa and based on the discovery that FASII genes in P. aeruginosa are coordinately upregulated in response to pathway disruption. A screen of 115,000 compounds identified a series of sulfonamidobenzamide (SABA) analogs, which generated strong luminescent signals in two FASII reporter strains but not in four control reporter strains designed to respond to inhibitors of pathways other than FASII. The SABA analogs selectively inhibited lipid biosynthesis in P. aeruginosa and exhibited minimal cytotoxicity to mammalian cells (50% cytotoxic concentration [CC50] ≥ 80 µM). The most potent SABA analogs had MICs of 0.5 to 7.0 µM (0.2 to 3.0 µg/ml) against an efflux-deficient Escherichia coli (ΔtolC) strain but had no detectable MIC against efflux-proficient E. coli or against P. aeruginosa (efflux deficient or proficient). Genetic, molecular genetic, and biochemical studies revealed that SABA analogs target the enzyme (AccC) catalyzing the biotin carboxylase half-reaction of the acetyl coenzyme A (acetyl-CoA) carboxylase step in the initiation phase of FASII in E. coli and P. aeruginosa. These results validate the capability and the sensitivity of this novel bioluminescent reporter screen to identify inhibitors of E. coli and P. aeruginosa FASII.


Assuntos
Antibacterianos/farmacologia , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Acetilcoenzima A/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia
14.
J Virol ; 88(3): 1447-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24198411

RESUMO

Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 µM); (ii) are selective (50% cytotoxicity concentration [CC(50)] of >100 µM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 µM(2) % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.


Assuntos
Antivirais/farmacologia , Hemaglutininas Virais/metabolismo , Vírus da Influenza A/efeitos dos fármacos , Influenza Aviária/virologia , Influenza Humana/virologia , Doenças das Aves Domésticas/virologia , Bibliotecas de Moléculas Pequenas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Galinhas , Hemaglutininas Virais/genética , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/fisiologia , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Bibliotecas de Moléculas Pequenas/química
15.
Bioorg Med Chem ; 23(17): 5789-98, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209266

RESUMO

Herein, we describe the antifungal evaluation of 43 bisamidine compounds, of which 26 are new, having the scaffold [Am]-[HetAr]-[linker]-[HetAr]-[Am], in which [Am] is a cyclic or acyclic amidine group, [linker] is a benzene, pyridine, pyrimidine, pyrazine ring, or an aliphatic chain of two to four carbon, and [HetAr] is a 5,6-bicyclic heterocycle such as indole, benzimidazole, imidazopyridine, benzofuran, or benzothiophene. In the head-to-head series the two [HetAr] units are oriented such that the 5-membered rings are connected through the linker, and in the head-to-tail series, one of the [HetAr] systems is connected through the 6-membered ring; additionally, in some of the head-to-tail compounds, the [linker] is omitted. Many of these compounds exhibited significant antifungal activity against Candida albicans, Candida krusei, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans (MIC ⩽ 4 µg/ml). The most potent compounds, for example, P10, P19 and P34, are comparable in antifungal activities to amphotericin B (MIC 0.125 µg/ml). They exhibited rapid fungicidal activity (>3 log10 decrease in cfu/ml in 4h) at concentrations equivalent to 4× the MIC in time kill experiments. The bisamidines strongly inhibited DNA, RNA and cell wall biosynthesis in C. albicans in macromolecular synthesis assays. However, the half-maximal inhibitory concentration for DNA synthesis was approximately 30-fold lower than those for RNA and cell wall biosynthesis. Fluorescence microscopy of intact cells of C. albicans treated with a bisamidine exhibited enhanced fluorescence in the presence of DNA, demonstrating that the bisamidine was localized to the nucleus. The results of this study show that bisamidines are potent antifungal agents with rapid fungicidal activity, which is likely to be the result of their DNA-binding activity. Although it was difficult to obtain a broad-spectrum antifungal compound with low cytotoxicity, some of the compounds (e.g., P9, P14 and P43) exhibited favorable CC50 values against HeLa cells and maintained considerable antifungal activity.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Furanos/química , Furanos/síntese química , Humanos
16.
Bioorg Med Chem ; 23(5): 1027-43, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25638499

RESUMO

The increasing prevalence of drug-resistant bacterial infections is driving the discovery and development not only of new antibiotics, but also of inhibitors of virulence factors that are crucial for in vivo pathogenicity. One such virulence factor is the type III secretion system (T3SS), which plays a critical role in the establishment and dissemination of Pseudomonas aeruginosa infections. We have recently described the discovery and characterization of a series of inhibitors of P. aeruginosa T3SS based on a phenoxyacetamide scaffold. To better characterize the factors involved in potent T3SS inhibition, we have conducted a systematic exploration of this structure, revealing several highly responsive structure-activity relationships indicative of interaction with a specific target. Most of the structural features contributing to potency were additive, and combination of those features produced optimized inhibitors with IC50 values <1µM.


Assuntos
Acetatos/farmacologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Acetatos/química , Amidas/química , Animais , Células CHO , Cricetinae , Cricetulus , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem ; 23(9): 2024-34, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25818767

RESUMO

Recently we described a novel pyranopyridine inhibitor (MBX2319) of RND-type efflux pumps of the Enterobacteriaceae. MBX2319 (3,3-dimethyl-5-cyano-8-morpholino-6-(phenethylthio)-3,4-dihydro-1H-pyrano[3,4-c]pyridine) is structurally distinct from other known Gram-negative efflux pump inhibitors (EPIs), such as 1-(1-naphthylmethyl)-piperazine (NMP), phenylalanylarginine-ß-naphthylamide (PAßN), D13-9001, and the pyridopyrimidine derivatives. Here, we report the synthesis and biological evaluation of 60 new analogs of MBX2319 that were designed to probe the structure activity relationships (SARs) of the pyranopyridine scaffold. The results of these studies produced a molecular activity map of the scaffold, which identifies regions that are critical to efflux inhibitory activities and those that can be modified to improve potency, metabolic stability and solubility. Several compounds, such as 22d-f, 22i and 22k, are significantly more effective than MBX2319 at potentiating the antibacterial activity of levofloxacin and piperacillin against Escherichia coli.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Enterobacteriaceae/efeitos dos fármacos , Piranos/farmacologia , Piridinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Enterobacteriaceae/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piranos/síntese química , Piranos/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
18.
Antimicrob Agents Chemother ; 58(3): 1809-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24379208

RESUMO

The methylenecyclopropane nucleoside (MCPN) analogs synguanol and its 6-alkoxy (MBX2168) and 6-alkylthio (MBX1616) derivatives retained good in vitro activities against several common ganciclovir-resistant UL97 kinase variants of human cytomegalovirus. Foscarnet-MCPN cross-resistance was observed among UL54 polymerase variants. UL54 exonuclease domain ganciclovir-cidofovir dual-resistant variants were remarkably more hypersensitive to these MCPNs than to cyclopropavir, with some 50% effective concentration ratios that were <0.1× the wild type. Different categories of MCPNs may have therapeutically exploitable mechanistic differences in viral DNA polymerase inhibition.


Assuntos
Antivirais/farmacologia , Ciclopropanos/farmacologia , Citomegalovirus/efeitos dos fármacos , Citosina/análogos & derivados , Ganciclovir/farmacologia , Guanina/análogos & derivados , Organofosfonatos/farmacologia , Cidofovir , Citomegalovirus/genética , Citosina/farmacologia , Farmacorresistência Viral Múltipla/genética , Foscarnet/farmacologia , Genótipo , Guanina/farmacologia , Mutação/genética
19.
Antimicrob Agents Chemother ; 58(1): 274-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24145545

RESUMO

Methylenecyclopropane nucleoside (MCPN) analogs are being investigated for treatment of human cytomegalovirus (HCMV) infection because of favorable preclinical data and limited ganciclovir cross-resistance. Monohydroxymethyl MCPNs bearing ether and thioether functionalities at the purine 6 position have antiviral activity against herpes simplex virus (HSV) and varicella-zoster virus (VZV) in addition to HCMV. The role of the HCMV UL97 kinase in the mechanism of action of these derivatives was examined. When tested against a kinase-inactive UL97 K355M virus, a moderate 5- to 7-fold increase in 50% effective concentration (EC50) was observed, in comparison to a 13- to 25-fold increase for either cyclopropavir or ganciclovir. Serial propagation of HCMV under two of these compounds selected for three novel UL97 mutations encoding amino acid substitutions D456N, C480R,and Y617del. When transferred to baseline laboratory HCMV strains, these mutations individually conferred resistance to all of the tested MCPNs, ganciclovir, and maribavir. However, the engineered strains also demonstrated severe growth defects and abnormal cytopathic effects similar to the kinase-inactive mutant. Expressed and purified UL97 kinase showed in vitro phosphorylation of the newly tested MCPNs. Thus, HCMV UL97 kinase is involved in the antiviral action of these MCPNs, but the in vitro selection of UL97-defective viruses suggests that their activity against more typical ganciclovir-resistant growth-competent UL97 mutants may be relatively preserved.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ciclopropanos/química , Ciclopropanos/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/enzimologia , Éter/química , Sulfetos/química , Linhagem Celular , Humanos
20.
Antimicrob Agents Chemother ; 58(4): 2211-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24468789

RESUMO

The type III secretion system (T3SS) is a clinically important virulence mechanism in Pseudomonas aeruginosa that secretes and translocates effector toxins into host cells, impeding the host's rapid innate immune response to infection. Inhibitors of T3SS may be useful as prophylactic or adjunctive therapeutic agents to augment the activity of antibiotics in P. aeruginosa infections, such as pneumonia and bacteremia. One such inhibitor, the phenoxyacetamide MBX 1641, exhibits very responsive structure-activity relationships, including striking stereoselectivity, in its inhibition of P. aeruginosa T3SS. These features suggest interaction with a specific, but unknown, protein target. Here, we identify the apparent molecular target by isolating inhibitor-resistant mutants and mapping the mutation sites by deep sequencing. Selection and sequencing of four independent mutants resistant to the phenoxyacetamide inhibitor MBX 2359 identified the T3SS gene pscF, encoding the needle apparatus, as the only locus of mutations common to all four strains. Transfer of the wild-type and mutated alleles of pscF, together with its chaperone and cochaperone genes pscE and pscG, to a ΔpscF P. aeruginosa strain demonstrated that each of the single-codon mutations in pscF is necessary and sufficient to provide secretion and translocation that is resistant to a variety of phenoxyacetamide inhibitor analogs but not to T3SS inhibitors with different chemical scaffolds. These results implicate the PscF needle protein as an apparent new molecular target for T3SS inhibitor discovery and suggest that three other chemically distinct T3SS inhibitors interact with one or more different targets or a different region of PscF.


Assuntos
Proteínas de Transporte/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Transporte/genética , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA