Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(29): 6608-6621, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32023358

RESUMO

In this work, a comprehensive account of the authors' synthetic efforts to prepare borazino-doped hexabenzocoronenes by using the Friedel-Crafts-type electrophilic aromatic substitution is reported. Hexafluoro-functionalized aryl borazines, bearing an ortho fluoride leaving group on each of the N- and B-aryl rings, was shown to lead to cascade-type electrophilic aromatic substitution events in the stepwise C-C bond formation, giving higher yields of borazinocoronenes than those obtained with borazine precursors bearing fluoride leaving groups at the ortho positions of the B-aryl substituents. By using this pathway, an unprecedented boroxadizine-doped PAH featuring a gulf-type periphery could be isolated, and its structure proven by single-crystal X-ray diffraction analysis. Mechanistic studies on the stepwise Friedel-Crafts-type cyclization suggest that the mechanism of the planarization reaction proceeds through extension of the π system. To appraise the doping effect of the boroxadizine unit on the optoelectronic properties of topology-equivalent molecular graphenes, the all-carbon and pyrylium PAH analogues, all featuring a gulf-type periphery, were also prepared. As already shown for the borazino-doped hexabenzocoronene, the replacement of the central benzene ring by its B3 N2 O congener widens the HOMO-LUMO gap and dramatically enhances the fluorescence quantum yield.

2.
Angew Chem Int Ed Engl ; 58(52): 18788-18792, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31621998

RESUMO

A new polymorph of l-tryptophan was prepared through crystallization from the gas phase, with structure determination carried out directly from powder XRD data augmented by periodic DFT-D calculations. The new polymorph (denoted ß) and the previously reported polymorph (denoted α) are both based on alternating hydrophilic and hydrophobic layers, but with substantially different hydrogen-bonding arrangements. The ß polymorph exhibits the energetically favourable l2-l2 hydrogen-bonding arrangement, which is unprecedented for amino acids with aromatic side chains. The specific molecular conformations adopted in the ß polymorph facilitate this hydrogen-bonding scheme while avoiding steric conflict of the side chains.


Assuntos
Polimorfismo Genético/genética , Triptofano/química , Humanos , Conformação Molecular
3.
Chemphyschem ; 19(24): 3341-3345, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347124

RESUMO

With the growing realization that crystallization processes may evolve through a sequence of different solid forms, including amorphous precursor phases, the development of suitable in-situ experimental probes is essential for comprehensively mapping the time-evolution of such processes. Here we demonstrate that the CLASSIC NMR (Combined Liquid- And Solid-State In-situ Crystallization NMR) strategy is a powerful technique for revealing the transitory existence of amorphous phases during crystallization processes, applying this technique to study crystallization of dl-menthol and l-menthol from their molten liquid phases. The CLASSIC NMR results provide direct insights into the conditions (including the specific time period) under which the molten liquid phase, transitory amorphous phases and final crystalline phases exist during these crystallization processes.

4.
Angew Chem Int Ed Engl ; 57(22): 6619-6623, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29633439

RESUMO

In situ solid-state NMR spectroscopy is exploited to monitor the structural evolution of a glycine/water glass phase formed on flash cooling an aqueous solution of glycine, with a range of modern solid-state NMR methods applied to elucidate structural properties of the solid phases present. The glycine/water glass is shown to crystallize into an intermediate phase, which then transforms to the ß polymorph of glycine. Our in situ NMR results fully corroborate the identity of the intermediate crystalline phase as glycine dihydrate, which was first proposed only very recently.

5.
Phys Chem Chem Phys ; 19(38): 25949-25960, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28944393

RESUMO

This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated.

6.
Faraday Discuss ; 179: 115-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859760

RESUMO

The application of in situ techniques for investigating crystallization processes promises to yield significant new insights into fundamental aspects of crystallization science. With this motivation, we recently developed a new in situ solid-state NMR technique that exploits the ability of NMR to selectively detect the solid phase in heterogeneous solid-liquid systems (of the type that exist during crystallization from solution), with the liquid phase "invisible" to the measurement. As a consequence, the technique allows the first solid particles produced during crystallization to be observed and identified, and allows the evolution of different solid phases (e.g., polymorphs) present during the crystallization process to be monitored as a function of time. This in situ solid-state NMR strategy has been demonstrated to be a powerful approach for establishing the sequence of solid phases produced during crystallization and for the discovery of new polymorphs. The most recent advance of the in situ NMR methodology has been the development of a strategy (named "CLASSIC NMR") that allows both solid-state NMR and liquid-state NMR spectra to be measured (essentially simultaneously) during the crystallization process, yielding information on the complementary changes that occur in both the solid and liquid phases as a function of time. In this article, we present new results that highlight the application of our in situ NMR techniques to successfully unravel different aspects of crystallization processes, focusing on: (i) the application of a CLASSIC NMR approach to monitor competitive inclusion processes in solid urea inclusion compounds, (ii) exploiting liquid-state NMR to gain insights into co-crystal formation between benzoic acid and pentafluorobenzoic acid, and (iii) applications of in situ solid-state NMR for the discovery of new solid forms of trimethylphosphine oxide and L-phenylalanine. Finally, the article discusses a number of important fundamental issues relating to practical aspects, the interpretation of results and the future scope of these techniques, including: (i) an assessment of the smallest size of solid particle that can be detected in in situ solid-state NMR studies of crystallization, (ii) an appraisal of whether the rapid sample spinning required by the NMR measurement technique may actually influence or perturb the crystallization behaviour, and (iii) a discussion of factors that influence the sensitivity and time-resolution of in situ solid-state NMR experiments.


Assuntos
Benzoatos/química , Ácido Benzoico/química , Fenilalanina/química , Fosfinas/química , Ureia/química , Cristalização , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Propriedades de Superfície
7.
Solid State Nucl Magn Reson ; 65: 107-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542671

RESUMO

Crystallization processes play a crucial role in many aspects of biological and physical sciences. Progress in deepening our fundamental understanding of such processes relies, to a large extent, on the development and application of new experimental strategies that allow direct in-situ monitoring of the process. In this paper, we give an overview of an in-situ solid-state NMR strategy that we have developed in recent years for monitoring the time-evolution of different polymorphic forms (or other solid forms) that arise as the function of time during crystallization from solution. The background to the strategy is described and several examples of the application of the technique are highlighted, focusing on both the evolution of different polymorphs during crystallization and the discovery of new polymorphs.


Assuntos
Cristalização/métodos , Espectroscopia de Ressonância Magnética/métodos , Fatores de Tempo
8.
Angew Chem Int Ed Engl ; 54(13): 3973-7, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25651303

RESUMO

During the last 75 years, crystal structures have been reported for 19 of the 20 directly encoded proteinogenic amino acids in their natural (enantiomerically pure) form. The crystal structure is now reported for the final member of this set: L-lysine. As crystalline L-lysine has a strong propensity to incorporate water under ambient atmospheric conditions to form a hydrate phase, the pure (non-hydrate) crystalline phase can be obtained only by dehydration under rigorously anhydrous conditions, resulting in a microcrystalline powder sample. For this reason, modern powder X-ray diffraction methods have been exploited to determine the crystal structure in this final, elusive case.


Assuntos
Aminoácidos/química , Lisina/química , Algoritmos , Cristalização , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Pós , Relação Estrutura-Atividade , Difração de Raios X
9.
Chemistry ; 20(33): 10343-50, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25042834

RESUMO

An excellent chiral symmetry-breaking spontaneous enantiomeric resolution phenomenon, denoted preferential enrichment, was observed on recrystallization of the 1:1 cocrystal of dl-arginine and fumaric acid, which is classified as a racemic compound crystal with a high eutectic ee value (>95 %), under non-equilibrium crystallization conditions. On the basis of temperature-controlled video microscopy and in situ time-resolved solid-state (13) C NMR spectroscopic studies on the crystallization process, a new mechanism of phase transition that can induce preferential enrichment is proposed.


Assuntos
Arginina/química , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Transição de Fase , Estereoisomerismo
10.
Angew Chem Int Ed Engl ; 53(34): 8939-43, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25044662

RESUMO

A new in-situ NMR strategy (termed CLASSIC NMR) for mapping the evolution of crystallization processes is reported, involving simultaneous measurement of both liquid-state and solid-state NMR spectra as a function of time. This combined strategy allows complementary information to be obtained on the evolution of both the solid and liquid phases during the crystallization process. In particular, as crystallization proceeds (monitored by solid-state NMR), the solution state becomes more dilute, leading to changes in solution-state speciation and the modes of molecular aggregation in solution, which are monitored by liquid-state NMR. The CLASSIC NMR experiment is applied here to yield new insights into the crystallization of m-aminobenzoic acid.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Cristalização , Espectroscopia de Prótons por Ressonância Magnética/métodos
11.
Cryst Growth Des ; 23(5): 3820-3833, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37159655

RESUMO

Phase transitions in crystalline molecular solids have important implications in the fundamental understanding of materials properties and in the development of materials applications. Herein, we report the solid-state phase transition behavior of 1-iodoadamantane (1-IA) investigated using a multi-technique strategy [synchrotron powder X-ray diffraction (XRD), single-crystal XRD, solid-state NMR, and differential scanning calorimetry (DSC)], which reveals complex phase transition behavior on cooling from ambient temperature to ca. 123 K and on subsequent heating to the melting temperature (348 K). Starting from the known phase of 1-IA at ambient temperature (phase A), three low-temperature phases are identified (phases B, C, and D); the crystal structures of phases B and C are reported, together with a re-determination of the structure of phase A. Remarkably, single-crystal XRD shows that some individual crystals of phase A transform to phase B, while other crystals of phase A transform instead to phase C. Results (from powder XRD and DSC) on cooling a powder sample of phase A are fully consistent with this behavior while also revealing an additional transformation pathway from phase A to phase D. Thus, on cooling, a powder sample of phase A transforms partially to phase C (at 229 K), partially to phase D (at 226 K) and partially to phase B (at 211 K). During the cooling process, each of the phases B, C, and D is formed directly from phase A, and no transformations are observed between phases B, C, and D. On heating the resulting triphasic powder sample of phases B, C, and D from 123 K, phase B transforms to phase D (at 211 K), followed by the transformation of phase D to phase C (at 255 K), and finally, phase C transforms to phase A (at 284 K). From these observations, it is apparent that different crystals of phase A, which are ostensibly identical at the level of information revealed by XRD, must actually differ in other aspects that significantly influence their low-temperature phase transition pathways. This unusual behavior will stimulate future studies to gain deeper insights into the specific properties that control the phase transition pathways in individual crystals of this material.

12.
Chem Sci ; 11(8): 2141-2147, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34123303

RESUMO

We demonstrate a simple method for real-time monitoring of mechanochemical synthesis of metal-organic frameworks, by measuring changes in pressure of gas produced in the reaction. Using this manometric method to monitor the mechanosynthesis of the zeolitic imidazolate framework ZIF-8 from basic zinc carbonate reveals an intriguing feedback mechanism in which the initially formed ZIF-8 reacts with the CO2 byproduct to produce a complex metal carbonate phase, the structure of which is determined directly from powder X-ray diffraction data. We also show that the formation of the carbonate phase may be prevented by addition of excess ligand. The excess ligand can subsequently be removed by sublimation, and reused. This enables not only the synthesis but also the purification, as well as the activation of the MOF to be performed entirely without solvent.

13.
R Soc Open Sci ; 6(8): 190518, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31599269

RESUMO

In a recent paper (Couzi et al. 2018 R. Soc. open sci. 5, 180058. (doi:10.1098/rsos.180058)), we proposed a new phenomenological model to account for the I↔II↔"III" phase sequence in incommensurate n-alkane/urea inclusion compounds, which represents an alternative interpretation to that proposed in work of Toudic et al. In a Comment (Toudic et al. 2019 R. Soc. open sci. 6, 182073. (doi:10.1098/rsos.182073)), Toudic et al. have questioned our assignment of the superspace group of phase II of n-nonadecane/urea, which they have previously assigned, based on a (3 + 2)-dimensional superspace, as C2221(00γ)(10δ). In this Reply, we present new results from a comprehensive synchrotron single-crystal X-ray diffraction study of n-nonadecane/urea, involving measurements as a detailed function of temperature across the I↔II↔"III" phase transition sequence. Our results demonstrate conclusively that "main reflections" (h, k, l, 0) with h+k odd are observed in phase II of n-nonadecane/urea (including temperatures in phase II that are just below the transition from phase I to phase II), in full support of our assignment of the (3+1)-dimensional superspace group P212121(00γ) to phase II. As our phenomenological model is based on phase II and phase "III" of this incommensurate material having the same (3+1)-dimensional superspace group P212121(00γ), it follows that the new X-ray diffraction results are in full support of our phenomenological model.

14.
J Phys Chem Lett ; 10(7): 1505-1510, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30882228

RESUMO

Crystallization plays an important role in many areas, and to derive a fundamental understanding of crystallization processes, it is essential to understand the sequence of solid phases produced as a function of time. Here, we introduce a new NMR strategy for studying the time evolution of crystallization processes, in which the crystallizing system is quenched rapidly to low temperature at specific time points during crystallization. The crystallized phase present within the resultant "frozen solution" may be investigated in detail using a range of sophisticated NMR techniques. The low temperatures involved allow dynamic nuclear polarization (DNP) to be exploited to enhance the signal intensity in the solid-state NMR measurements, which is advantageous for detection and structural characterization of transient forms that are present only in small quantities. This work opens up the prospect of studying the very early stages of crystallization, at which the amount of solid phase present is intrinsically low.

15.
Chem Commun (Camb) ; 55(53): 7679-7682, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31204737

RESUMO

Main-group metals are inherently labile, hindering their use in catalysis. We exploit this lability in the synthesis of isocyanurates. For the first time we report a highly active catalyst that trimerizes alkyl, allyl and aryl isocyanates, and di-isocyanates, with low catalyst loadings under mild conditions, using a hemi-labile aluminium-pyridyl-bis(iminophenolate) complex.

16.
Acta Crystallogr C Struct Chem ; 73(Pt 3): 137-148, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257007

RESUMO

Solid-state NMR spectroscopy is a well-established and versatile technique for studying the structural and dynamic properties of solids, and there is considerable potential to exploit the power and versatility of solid-state NMR for in-situ studies of chemical processes. However, a number of technical challenges are associated with adapting this technique for in-situ studies, depending on the process of interest. Recently, an in-situ solid-state NMR strategy for monitoring the evolution of crystallization processes has been developed and has proven to be a promising approach for identifying the sequence of distinct solid forms present as a function of time during crystallization from solution, and for the discovery of new polymorphs. The latest development of this technique, called `CLASSIC' NMR, allows the simultaneous measurement of both liquid-state and solid-state NMR spectra as a function of time, thus yielding complementary information on the evolution of both the liquid phase and the solid phase during crystallization from solution. This article gives an overview of the range of NMR strategies that are currently available for in-situ studies of crystallization processes, with examples of applications that highlight the potential of these strategies to deepen our understanding of crystallization phenomena.

17.
Chem Sci ; 8(5): 3971-3979, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28553539

RESUMO

Derivatives of guanine exhibit diverse supramolecular chemistry, with a variety of distinct hydrogen-bonding motifs reported in the solid state, including ribbons and quartets, which resemble the G-quadruplex found in nucleic acids with sequences rich in guanine. Reflecting this diversity, the solid-state structural properties of 3',5'-bis-O-decanoyl-2'-deoxyguanosine, reported in this paper, reveal a hydrogen-bonded guanine ribbon motif that has not been observed previously for 2'-deoxyguanosine derivatives. In this case, structure determination was carried out directly from powder XRD data, representing one of the most challenging organic molecular structures (a 90-atom molecule) that has been solved to date by this technique. While specific challenges were encountered in the structure determination process, a successful outcome was achieved by augmenting the powder XRD analysis with information derived from solid-state NMR data and with dispersion-corrected periodic DFT calculations for structure optimization. The synergy of experimental and computational methodologies demonstrated in the present work is likely to be an essential feature of strategies to further expand the application of powder XRD as a technique for structure determination of organic molecular materials of even greater complexity in the future.

18.
J Phys Chem C Nanomater Interfaces ; 117(23): 12258-12265, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24386493

RESUMO

We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C-1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.

19.
J Phys Chem Lett ; 3(21): 3176-81, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26296025

RESUMO

We report the discovery of new polymorphic forms of solids by exploiting a solid-state NMR technique that has been developed for in situ monitoring of the evolution of crystallization processes. The capability of the technique to reveal the existence of new polymorphic forms of molecular solids is illustrated by the discovery of two new polymorphs of methyldiphenylphosphine oxide and a new solid form of the 1,10-dihydroxydecane/urea system.

20.
Chem Commun (Camb) ; 48(22): 2761-3, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22297609

RESUMO

We report the crystal structure of L-arginine, one of the last remaining natural amino acids for which the crystal structure has never been determined; structure determination was carried out directly from powder X-ray diffraction (XRD) data, exploiting the direct-space genetic algorithm technique for structure solution followed by Rietveld refinement.


Assuntos
Arginina/química , Algoritmos , Cristalografia por Raios X , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA