Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Radiology ; 289(1): 90-100, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30040040

RESUMO

Purpose To evaluate whether dual-selectin-targeted US molecular imaging allows longitudinal monitoring of anti-inflammatory treatment effects in an acute terminal ileitis model in swine. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies. Fourteen swine with chemically induced acute terminal ileitis (day 0) were randomized into the following groups: (a) an anti-inflammatory treatment group (n = 8; meloxicam, 0.25 mg per kilogram of body weight; prednisone, 0.5 mg/kg) and (b) a control group (n = 6; saline). US molecular imaging was performed with a clinical US machine after intravenous injection of clinically translatable dual P- and E-selectin-targeted microbubbles (5 × 108/kg). Three inflamed bowel segments per swine were imaged at baseline, as well as on days 1, 3, and 6 after treatment initiation. At day 6, bowel segments were analyzed ex vivo for selectin expression levels by using quantitative immunofluorescence. Results After induction of inflammation, US molecular imaging signal increased at day 1 in both animal groups (P < .001). At day 3, signal in the treatment group decreased (P < .001 vs day 1), while signal in control animals did not significantly change (P = .18 vs day 1) and was higher (P = .001) compared with that in the treatment group. At day 6, signal in the treatment group further decreased and remained lower (P = .02) compared with that in the control group. Immunofluorescence confirmed significant (P ≤ .04) downregulation of both P- and E-selectin expression levels in treated versus control bowel segments. Conclusion Dual-selectin-targeted US molecular imaging allows longitudinal monitoring of anti-inflammatory treatment effects in a large-animal model of acute ileitis. This supports further clinical development of this quantitative and radiation-free technique for monitoring inflammatory bowel disease. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Anti-Inflamatórios/uso terapêutico , Monitoramento de Medicamentos/métodos , Ileíte/diagnóstico por imagem , Ileíte/tratamento farmacológico , Imagem Molecular/métodos , Animais , Microbolhas , Suínos
2.
Eur Radiol ; 28(5): 2068-2076, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29170798

RESUMO

OBJECTIVES: To evaluate the feasibility and time saving of fusing CT and MR enterography with ultrasound for ultrasound molecular imaging (USMI) of inflammation in an acute small bowel inflammation of swine. METHODS: Nine swine with ileitis were scanned with either CT (n = 3) or MR (n = 6) enterography. Imaging times to load CT/MR images onto a clinical ultrasound machine, fuse them to ultrasound with an anatomical landmark-based approach, and identify ileitis were compared to the imaging times without anatomical road mapping. Inflammation was then assessed by USMI using dual selectin-targeted (MBSelectin) and control (MBControl) contrast agents in diseased and healthy control bowel segments, followed by ex vivo histology. RESULTS: Cross-sectional image fusion with ultrasound was feasible with an alignment error of 13.9 ± 9.7 mm. Anatomical road mapping significantly reduced (P < 0.001) scanning times by 40%. Localising ileitis was achieved within 1.0 min. Subsequently performed USMI demonstrated significantly (P < 0.001) higher imaging signal using MBSelectin compared to MBControl and histology confirmed a significantly higher inflammation score (P = 0.006) and P- and E-selectin expression (P ≤ 0.02) in inflamed vs. healthy bowel. CONCLUSIONS: Fusion of CT and MR enterography data sets with ultrasound in real time is feasible and allows rapid anatomical localisation of ileitis for subsequent quantification of inflammation using USMI. KEY POINTS: • Real-time fusion of CT/MRI with ultrasound to localise ileitis is feasible. • Anatomical road mapping using CT/MRI significantly decreases the scanning time for USMI. • USMI allows quantification of inflammation in swine, verified with ex vivo histology.


Assuntos
Ileíte/diagnóstico , Intestino Delgado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Animais , Inflamação/diagnóstico , Suínos
3.
Angiogenesis ; 20(4): 547-555, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28721500

RESUMO

Due to spatial tumor heterogeneity and consecutive sampling errors, it is critically important to assess treatment response following antiangiogenic therapy in three dimensions as two-dimensional assessment has been shown to substantially over- and underestimate treatment response. In this study, we evaluated whether three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) imaging allows assessing early changes in tumor perfusion following antiangiogenic treatment (bevacizumab administered at a dose of 10 mg/kg b.w.), and whether these changes could predict treatment response in colon cancer tumors that either are responsive (LS174T tumors) or none responsive (CT26) to the proposed treatment. Our results showed that the perfusion parameters of 3D DCE-US including peak enhancement (PE) and area under curve (AUC) significantly decreased by up to 69 and 77%, respectively, in LS174T tumors within 1 day after antiangiogenic treatment (P = 0.005), but not in CT26 tumors (P > 0.05). Similarly, the percentage area of neovasculature significantly decreased in treated versus control LS174T tumors (P < 0.001), but not in treated versus control CT26 tumors (P = 0.796). Early decrease in both PE and AUC by 45-50% was predictive of treatment response in 100% (95% CI 69.2, 100%) of responding tumors, and in 100% (95% CI 88.4, 100%) and 86.7% (95% CI 69.3, 96.2%), respectively, of nonresponding tumors. In conclusion, 3D DCE-US provides clinically relevant information on the variability of tumor response to antiangiogenic therapy and may be further developed as biomarker for predicting treatment outcomes.


Assuntos
Bevacizumab/uso terapêutico , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Meios de Contraste/química , Imageamento Tridimensional , Ultrassonografia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Bevacizumab/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos Nus , Perfusão , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
4.
Radiology ; 282(2): 443-452, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27490690

RESUMO

Purpose To perform an intra-animal comparison between (a) three-dimensional (3D) molecularly targeted ultrasonography (US) by using clinical-grade vascular endothelial growth factor receptor 2 (VEGFR2)-targeted microbubbles and (b) 3D dynamic contrast material-enhanced (DCE) US by using nontargeted microbubbles for assessment of antiangiogenic treatment effects in a murine model of human colon cancer. Materials and Methods Twenty-three mice with human colon cancer xenografts were randomized to receive either single-dose antiangiogenic treatment (bevacizumab, n = 14) or control treatment (saline, n = 9). At baseline and 24 hours after treatment, animals were imaged with a clinical US system equipped with a clinical matrix array transducer by using the following techniques: (a) molecularly targeted US with VEGFR2-targeted microbubbles, (b) bolus DCE US with nontargeted microbubbles, and (c) destruction-replenishment DCE US with nontargeted microbubbles. VEGFR2-targeted US signal, peak enhancement, area under the time-intensity curve, time to peak, relative blood volume (rBV), relative blood flow, and blood flow velocity were quantified. VEGFR2 expression and percentage area of blood vessels were assessed ex vivo with quantitative immunofluorescence and correlated with corresponding in vivo US parameters. Statistical analysis was performed with Wilcoxon signed rank tests and rank sum tests, as well as Pearson correlation analysis. Results Molecularly targeted US signal with VEGFR2-targeted microbubbles, peak enhancement, and rBV significantly decreased (P ≤ .03) after a single antiangiogenic treatment compared with those in the control group; similarly, ex vivo VEGFR2 expression (P = .03) and percentage area of blood vessels (P = .03) significantly decreased after antiangiogenic treatment. Three-dimensional molecularly targeted US signal correlated well with VEGFR2 expression (r = 0.86, P = .001), and rBV (r = 0.71, P = .01) and relative blood flow (r = 0.78, P = .005) correlated well with percentage area of blood vessels, while other US perfusion parameters did not. Conclusion Three-dimensional molecularly targeted US and destruction-replenishment 3D DCE US provide complementary molecular and functional in vivo imaging information on antiangiogenic treatment effects in human colon cancer xenografts compared with ex vivo reference standards. © RSNA, 2016 Online supplemental material is available for this article.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Imageamento Tridimensional , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Ultrassonografia/métodos , Animais , Meios de Contraste , Modelos Animais de Doenças , Feminino , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular
5.
Proc Natl Acad Sci U S A ; 111(30): E3091-100, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024225

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Knockout , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Radiology ; 280(2): 332-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27429141

RESUMO

Photoacoustic imaging has evolved into a clinically translatable platform with the potential to complement existing imaging techniques for the management of cancer, including detection, characterization, prognosis, and treatment monitoring. In photoacoustic imaging, tissue is optically excited to produce ultrasonographic images that represent a spatial map of optical absorption of endogenous constituents such as hemoglobin, fat, melanin, and water or exogenous contrast agents such as dyes and nanoparticles. It can therefore provide functional and molecular information that allows noninvasive soft-tissue characterization. Photoacoustic imaging has matured over the years and is currently being translated into the clinic with various clinical studies underway. In this review, the current state of photoacoustic imaging is presented, including techniques and instrumentation, followed by a discussion of potential clinical applications of this technique for the detection and management of cancer. (©) RSNA, 2016.


Assuntos
Oncologia/métodos , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Humanos
7.
Radiology ; 280(3): 826-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27332865

RESUMO

Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article.


Assuntos
Genes Reporter , Coração/diagnóstico por imagem , Transplante de Células-Tronco Mesenquimais , Imagem Molecular/métodos , Imagem Multimodal/métodos , Animais , Radioisótopos de Flúor , Guanina/análogos & derivados , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Suínos
8.
Radiology ; 280(3): 815-25, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27308957

RESUMO

Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow-derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. (©) RSNA, 2016 Online supplemental material is available for this article.


Assuntos
Genes Reporter , Transplante de Células-Tronco Mesenquimais/métodos , Imagem Molecular , Imagem Multimodal , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/terapia , Animais , Feminino , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons , Transfecção
9.
Adv Exp Med Biol ; 880: 263-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26486343

RESUMO

Therapeutic efficacy of both traditional chemotherapy and gene therapy in cancer is highly dependent on the ability to deliver drugs across natural barriers, such as the vessel wall or tumor cell membranes. In this regard, sonoporation induced by ultrasound-guided microbubble (USMB) destruction has been widely investigated in the enhancement of therapeutic drug delivery given it can help overcome these natural barriers, thereby increasing drug delivery into cancer. In this chapter we discuss challenges in current cancer therapy and how some of these challenges could be overcome using USMB-mediated drug delivery. We particularly focus on recent advances in delivery approaches that have been developed to further improve therapeutic efficiency and specificity of various cancer treatments. An example of clinical translation of USMB-mediated drug delivery is also shown.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Microbolhas , Neoplasias/tratamento farmacológico , Ultrassom , Endotélio Vascular/fisiologia , Humanos , Microambiente Tumoral
10.
Radiology ; 277(2): 424-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26020439

RESUMO

PURPOSE: To evaluate feasibility and reproducibility of three-dimensional (3D) dynamic contrast material-enhanced (DCE) ultrasonographic (US) imaging by using a clinical matrix array transducer to assess early antiangiogenic treatment effects in human colon cancer xenografts in mice. MATERIALS AND METHODS: Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Three-dimensional DCE US imaging with two techniques (bolus and destruction-replenishment) was performed in human colon cancer xenografts (n = 38) by using a clinical US system and transducer. Twenty-one mice were imaged twice to assess reproducibility. Seventeen mice were scanned before and 24 hours after either antiangiogenic (n = 9) or saline-only (n = 8) treatment. Data sets of 3D DCE US examinations were retrospectively segmented into consecutive 1-mm imaging planes to simulate two-dimensional (2D) DCE US imaging. Six perfusion parameters (peak enhancement [PE], area under the time-intensity curve [AUC], time to peak [TTP], relative blood volume [rBV], relative blood flow [rBF], and blood flow velocity) were measured on both 3D and 2D data sets. Percent area of blood vessels was quantified ex vivo with immunofluorescence. Statistical analyses were performed with the Wilcoxon rank test by calculating intraclass correlation coefficients and by using Pearson correlation analysis. RESULTS: Reproducibility of both 3D DCE US imaging techniques was good to excellent (intraclass correlation coefficient, 0.73-0.86). PE, AUC, rBV, and rBF significantly decreased (P ≤ .04) in antiangiogenic versus saline-treated tumors. rBV (r = 0.74; P = .06) and rBF (r = 0.85; P = .02) correlated with ex vivo percent area of blood vessels, although the statistical significance of rBV was not reached, likely because of small sample size. Overall, 2D DCE-US overestimated and underestimated treatment effects from up to 125-fold to170-fold compared with 3D DCE US imaging. If the central tumor plane was assessed, treatment response was underestimated up to threefold or overestimated up to 57-fold on 2D versus 3D DCE US images. CONCLUSION: Three-dimensional DCE US imaging with a clinical matrix array transducer is feasible and reproducible to assess tumor perfusion in human colon cancer xenografts in mice and allows for assessment of early treatment response after antiangiogenic therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Meios de Contraste , Modelos Animais de Doenças , Feminino , Xenoenxertos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia
11.
Radiology ; 277(3): 644-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26599925

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer-related death in the United States and is associated with a dismal prognosis, particularly when diagnosed at an advanced stage. Overall survival is significantly improved if PDAC is detected at an early stage prior to the onset of symptoms. At present, there is no suitable screening strategy for the general population. Available diagnostic serum markers are not sensitive or specific enough, and clinically available imaging modalities are inadequate for visualizing early-stage lesions. In this article, the role of currently available blood biomarkers and imaging tests for the early detection of PDAC will be reviewed. Also, the emerging biomarkers and molecularly targeted imaging agents being developed to improve the specificity of current imaging modalities for PDAC will be discussed. A strategy incorporating blood biomarkers and molecularly targeted imaging agents could lead to improved screening and earlier detection of PDAC in the future. (©) RSNA, 2015.


Assuntos
Adenocarcinoma/diagnóstico , Biomarcadores/sangue , Carcinoma Ductal Pancreático/diagnóstico , Diagnóstico por Imagem/métodos , Detecção Precoce de Câncer/métodos , Neoplasias Pancreáticas/diagnóstico , Proteínas Sanguíneas/análise , Colangiopancreatografia Retrógrada Endoscópica , Meios de Contraste , Análise Custo-Benefício , Metilação de DNA , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , MicroRNAs/sangue , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
12.
Radiology ; 274(3): 790-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25322341

RESUMO

PURPOSE: To test ultrasonographic (US) imaging with vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted microbubble contrast material for the detection of pancreatic ductal adenocarcinoma (PDAC) in a transgenic mouse model of pancreatic cancer development. MATERIALS AND METHODS: Experiments involving animals were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Transgenic mice (n = 44; Pdx1-Cre, KRas(G12D), Ink4a(-/-)) that spontaneously develop PDAC starting at 4 weeks of age were imaged by using a dedicated small-animal US system after intravenous injection of 5 × 10(7) clinical-grade VEGFR2-targeted microbubble contrast material. The pancreata in wild-type (WT) mice (n = 64) were scanned as controls. Pancreatic tissue was analyzed ex vivo by means of histologic examination (with hematoxylin-eosin staining) and immunostaining of vascular endothelial cell marker CD31 and VEGFR2. The Wilcoxon rank sum test and linear mixed-effects model were used for statistical analysis. RESULTS: VEGFR2-targeted US of PDAC showed significantly higher signal intensities (26.8-fold higher; mean intensity ± standard deviation, 6.7 linear arbitrary units [lau] ± 8.5; P < .001) in transgenic mice compared with normal, control pancreata of WT mice (mean intensity, 0.25 lau ± 0.25). The highest VEGFR2-targeted US signal intensities were observed in smaller tumors, less than 3 mm in diameter (30.8-fold higher than control tissue with mean intensity of 7.7 lau ± 9.3 [P < .001]; and 1.7-fold higher than lesions larger than 3 mm in diameter with mean intensity of 4.6 lau ± 5.8 [P < .024]). Ex vivo quantitative VEGFR2 immunofluorescence demonstrated that VEGFR2 expression was significantly higher in pancreatic tumors (P < .001; mean fluorescent intensity, 499.4 arbitrary units [au] ± 179.1) compared with normal pancreas (mean fluorescent intensity, 232.9 au ± 83.7). CONCLUSION: US with clinical-grade VEGFR2-targeted microbubbles allows detection of small foci of PDAC in transgenic mice.


Assuntos
Carcinoma Ductal Pancreático/irrigação sanguínea , Carcinoma Ductal Pancreático/diagnóstico por imagem , Meios de Contraste , Detecção Precoce de Câncer/métodos , Microbolhas , Neovascularização Patológica/diagnóstico por imagem , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/diagnóstico por imagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Animais , Carcinoma Ductal Pancreático/química , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/química , Ultrassonografia
13.
Radiology ; 276(3): 809-17, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25965901

RESUMO

PURPOSE: To evaluate the feasibility and reproducibility of ultrasonography (US) performed with dual-selectin-targeted contrast agent microbubbles (MBs) for assessment of inflammation in a porcine acute terminal ileitis model, with histologic findings as a reference standard. MATERIALS AND METHODS: The study had institutional Animal Care and Use Committee approval. Acute terminal ileitis was established in 19 pigs; four pigs served as control pigs. The ileum was imaged with clinical-grade dual P- and E-selectin-targeted MBs (MBSelectin) at increasing doses (0.5, 1.0, 2.5, 5.0, 10, and 20 × 10(8) MB per kilogram of body weight) and with control nontargeted MBs (MBControl). For reproducibility testing, examinations were repeated twice after the MBSelectin and MBControl injections. After imaging, scanned ileal segments were analyzed ex vivo both for inflammation grade (by using hematoxylin-eosin staining) and for expression of selectins (by using quantitative immunofluorescence analysis). Statistical analysis was performed by using the t test, intraclass correlation coefficients (ICCs), and Spearman correlation analysis. RESULTS: Imaging signal increased linearly (P < .001) between a dose of 0.5 and a dose of 5.0 × 10(8) MB/kg and plateaued between a dose of 10 and a dose of 20 × 10(8) MB/kg. Imaging signals were reproducible (ICC = 0.70), and administration of MBSelectin in acute ileitis resulted in a significantly higher (P < .001) imaging signal compared with that in control ileum and MBControl. Ex vivo histologic grades of inflammation correlated well with in vivo US signal (ρ = 0.79), and expression levels of both P-selectin (37.4% ± 14.7 [standard deviation] of vessels positive; P < .001) and E-selectin (31.2% ± 25.7) in vessels in the bowel wall of segments with ileitis were higher than in control ileum (5.1% ± 3.7 for P-selectin and 4.8% ± 2.3 for E-selectin). CONCLUSION: Quantitative measurements of inflammation obtained by using dual-selectin-targeted US are reproducible and correlate well with the extent of inflammation at histologic examination in a porcine acute ileitis model as a next step toward clinical translation.


Assuntos
Meios de Contraste , Doença de Crohn/diagnóstico por imagem , Selectina E , Microbolhas , Selectina-P , Doença Aguda , Animais , Doença de Crohn/metabolismo , Selectina E/análise , Estudos de Viabilidade , Feminino , Selectina-P/análise , Reprodutibilidade dos Testes , Suínos , Ultrassonografia
14.
Gastroenterology ; 145(4): 885-894.e3, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23791701

RESUMO

BACKGROUND & AIMS: Early detection of pancreatic ductal adenocarcinoma (PDAC) allows for surgical resection and increases patient survival times. Imaging agents that bind and amplify the signal of neovascular proteins in neoplasms can be detected by ultrasound, enabling accurate detection of small lesions. We searched for new markers of neovasculature in PDAC and assessed their potential for tumor detection by ultrasound molecular imaging. METHODS: Thymocyte differentiation antigen 1 (Thy1) was identified as a specific biomarker of PDAC neovasculature by proteomic analysis. Up-regulation in PDAC was validated by immunohistochemical analysis of pancreatic tissue samples from 28 healthy individuals, 15 with primary chronic pancreatitis tissues, and 196 with PDAC. Binding of Thy1-targeted contrast microbubbles was assessed in cultured cells, in mice with orthotopic PDAC xenograft tumors expressing human Thy1 on the neovasculature, and on the neovasculature of a genetic mouse model of PDAC. RESULTS: Based on immunohistochemical analyses, levels of Thy1 were significantly higher in the vascular of human PDAC than chronic pancreatitis (P = .007) or normal tissue samples (P < .0001). In mice, ultrasound imaging accurately detected human Thy1-positive PDAC xenografts, as well as PDACs that express endogenous Thy1 in genetic mouse models of PDAC. CONCLUSIONS: We have identified and validated Thy1 as a marker of PDAC that can be detected by ultrasound molecular imaging in mice. The development of a specific imaging agent and identification of Thy1 as a new biomarker could aid in the diagnosis of this cancer and management of patients.


Assuntos
Adenocarcinoma/diagnóstico , Biomarcadores Tumorais/análise , Carcinoma Ductal Pancreático/diagnóstico , Imagem Molecular/métodos , Neoplasias Pancreáticas/diagnóstico , Antígenos Thy-1/análise , Adenocarcinoma/química , Adenocarcinoma/diagnóstico por imagem , Animais , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/diagnóstico por imagem , Humanos , Imuno-Histoquímica , Camundongos , Transplante de Neoplasias , Pâncreas/química , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/diagnóstico por imagem , Transplante Heterólogo , Ultrassonografia
15.
Radiology ; 272(2): 322-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25058132

RESUMO

With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging-such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods-remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented.


Assuntos
Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Biomarcadores Tumorais/análise , Biópsia por Agulha , Meios de Contraste/farmacocinética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico
16.
Med Phys ; 51(7): 4827-4837, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38377383

RESUMO

BACKGROUND: Dynamic contrast-enhanced ultrasound (DCE-US) is highly susceptible to motion artifacts arising from patient movement, respiration, and operator handling and experience. Motion artifacts can be especially problematic in the context of perfusion quantification. In conventional 2D DCE-US, motion correction (MC) algorithms take advantage of accompanying side-by-side anatomical B-Mode images that contain time-stable features. However, current commercial models of 3D DCE-US do not provide side-by-side B-Mode images, which makes MC challenging. PURPOSE: This work introduces a novel MC algorithm for 3D DCE-US and assesses its efficacy when handling clinical data sets. METHODS: In brief, the algorithm uses a pyramidal approach whereby short temporal windows consisting of three consecutive frames are created to perform local registrations, which are then registered to a master reference derived from a weighted average of all frames. We applied the algorithm to imaging studies from eight patients with metastatic lesions in the liver and assessed improvements in original versus motion corrected 3D DCE-US cine using: (i) frame-to-frame volumetric overlap of segmented lesions, (ii) normalized correlation coefficient (NCC) between frames (similarity analysis), and (iii) sum of squared errors (SSE), root-mean-squared error (RMSE), and r-squared (R2) quality-of-fit from fitted time-intensity curves (TIC) extracted from a segmented lesion. RESULTS: We noted improvements in frame-to-frame lesion overlap across all patients, from 68% ± 13% without correction to 83% ± 3% with MC (p = 0.023). Frame-to-frame similarity as assessed by NCC also improved on two different sets of time points from 0.694 ± 0.057 (original cine) to 0.862 ± 0.049 (corresponding MC cine) and 0.723 ± 0.066 to 0.886 ± 0.036 (p ≤ 0.001 for both). TIC analysis displayed a significant decrease in RMSE (p = 0.018) and a significant increase in R2 goodness-of-fit (p = 0.029) for the patient cohort. CONCLUSIONS: Overall, results suggest decreases in 3D DCE-US motion after applying the proposed algorithm.


Assuntos
Algoritmos , Meios de Contraste , Imageamento Tridimensional , Ultrassonografia , Humanos , Imageamento Tridimensional/métodos , Projetos Piloto , Movimento , Artefatos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Hepáticas/diagnóstico por imagem
17.
Gastroenterology ; 143(3): 754-764, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22684045

RESUMO

BACKGROUND & AIMS: Wnt signaling regulates hepatic function and nutrient homeostasis. However, little is known about the roles of ß-catenin in cellular respiration or mitochondria of hepatocytes. METHODS: We investigated ß-catenin's role in the metabolic function of hepatocytes under homeostatic conditions and in response to metabolic stress using mice with hepatocyte-specific deletion of ß-catenin and their wild-type littermates, given either saline (sham) or ethanol (as a model of binge drinking and acute ethanol intoxication). RESULTS: Under homeostatic conditions, ß-catenin-deficient hepatocytes demonstrated mitochondrial dysfunctions that included impairments to the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS) and decreased production of adenosine triphosphate (ATP). There was no evidence for redox imbalance or oxidative cellular injury in the absence of metabolic stress. In mice with ß-catenin-deficient hepatocytes, ethanol intoxication led to significant redox imbalance in the hepatocytes and further deterioration in mitochondrial function that included reduced OXPHOS, fatty acid oxidation (FAO), and ATP production. Ethanol feeding significantly increased liver steatosis and oxidative damage, compared with wild-type mice, and disrupted the ratio of nicotinamide adenine dinucleotide. ß-catenin-deficient hepatocytes also had showed disrupted signaling of Sirt1/peroxisome proliferator-activated receptor-α signaling. CONCLUSIONS: ß-catenin has an important role in the maintenance of mitochondrial homeostasis, regulating ATP production via the tricarboxylic acid cycle, OXPHOS, and fatty acid oxidation; ß-catenin function in these systems is compromised under conditions of nutrient oxidative stress. Reagents that alter Wnt-ß-catenin signaling might be developed as a useful new therapeutic strategy for treatment of liver disease.


Assuntos
Metabolismo Energético , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Trifosfato de Adenosina , Animais , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Etanol/toxicidade , Ácidos Graxos/metabolismo , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Homeostase , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo , Fatores de Tempo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/deficiência , beta Catenina/genética
18.
Radiology ; 267(3): 818-29, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23371306

RESUMO

PURPOSE: To develop and test a molecular imaging approach that uses ultrasonography (US) and a clinically translatable dual-targeted (P- and E-selectin) contrast agent (MBSelectin) in the quantification of inflammation at the molecular level and to quantitatively correlate selectin-targeted US with fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and computed tomography (CT) in terms of visualization and quantification of different levels of inflammation in a murine acute colitis model. MATERIALS AND METHODS: Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. MBSelectin was developed by covalently binding an analog of the naturally occurring binding ligand P-selectin glycoprotein ligand 1 fused to a human fragment crystallizable(or Fc) domain onto the lipid shell of perfluorobutane and nitrogen-containing MBs. Binding specificity of MBSelectin was assessed in vitro with a flow chamber assay and in vivo with a chemically induced acute colitis murine model. US signal was quantitatively correlated with FDG uptake at PET/CT and histologic grade. Statistical analysis was performed with the Student t test, analysis of variance, and Pearson correlation analysis. RESULTS: MBSelectin showed strong attachment to both human and mouse P- and E-selectin compared with MBControl in vitro (P ≤ .002). In vivo, US signal was significantly increased (P < .001) in mice with acute colitis (173.8 arbitrary units [au] ± 134.8 [standard deviation]) compared with control mice (5.0 au ± 4.5). US imaging signal strongly correlated with FDG uptake on PET/CT images (ρ = 0.89, P < .001). Ex vivo analysis enabled confirmation of inflammation in mice with acute colitis and high expression levels of P- and E-selectin in mucosal capillaries (P = .014). CONCLUSION: US with MBSelectin specifically enables detection and quantification of inflammation in a murine acute colitis model, leveraging the natural pathway of leukocyte recruitment in inflammatory tissue. US imaging with MBSelectin correlates well with FDG uptake at PET/CT imaging.


Assuntos
Meios de Contraste , Selectina E , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Imagem Molecular/métodos , Imagem Multimodal , Selectina-P , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Análise de Variância , Animais , Modelos Animais de Doenças , Selectina E/metabolismo , Fluordesoxiglucose F18 , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Selectina-P/metabolismo , Compostos Radiofarmacêuticos , Ultrassonografia
19.
Angiogenesis ; 15(3): 433-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22535383

RESUMO

PURPOSE: To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. MATERIALS AND METHODS: The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. RESULTS: MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). CONCLUSION: Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.


Assuntos
Neoplasias/irrigação sanguínea , Neovascularização Patológica/diagnóstico por imagem , Ultrassom , Algoritmos , Animais , Feminino , Imunofluorescência , Humanos , Camundongos , Camundongos Nus , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Transplante Heterólogo , Ultrassonografia
20.
Radiology ; 264(2): 349-68, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22821695

RESUMO

Molecular imaging is expected to have a major impact on the early diagnosis of diseases and disease monitoring in the next decade. Traditionally, nuclear imaging techniques have been the mainstay of molecular imaging in the clinical arena. However, with continued development of molecularly targeted contrast agents for nonnuclear imaging techniques such as magnetic resonance (MR), computed tomography (CT), and ultrasonography (US), the spectrum of clinical molecular imaging applications is expanding. In the second part of this review series, an overview of applications of molecular MR imaging-, CT-, and US-based imaging strategies that show promise for clinical translation is presented, and key challenges that need to be addressed to successfully translate these promising techniques in the future are discussed. © RSNA, 2012.


Assuntos
Imagem Molecular/métodos , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA