Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Nature ; 468(7325): 829-33, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21102433

RESUMO

Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly defined. Here we demonstrate that a subpopulation of endothelial cells within glioblastomas harbour the same somatic mutations identified within tumour cells, such as amplification of EGFR and chromosome 7. We additionally demonstrate that the stem-cell-like CD133(+) fraction includes a subset of vascular endothelial-cadherin (CD144)-expressing cells that show characteristics of endothelial progenitors capable of maturation into endothelial cells. Extensive in vitro and in vivo lineage analyses, including single cell clonal studies, further show that a subpopulation of the CD133(+) stem-like cell fraction is multipotent and capable of differentiation along tumour and endothelial lineages, possibly via an intermediate CD133(+)/CD144(+) progenitor cell. The findings are supported by genetic studies of specific exons selected from The Cancer Genome Atlas, quantitative FISH and comparative genomic hybridization data that demonstrate identical genomic profiles in the CD133(+) tumour cells, their endothelial progenitor derivatives and mature endothelium. Exposure to the clinical anti-angiogenesis agent bevacizumab or to a γ-secretase inhibitor as well as knockdown shRNA studies demonstrate that blocking VEGF or silencing VEGFR2 inhibits the maturation of tumour endothelial progenitors into endothelium but not the differentiation of CD133(+) cells into endothelial progenitors, whereas γ-secretase inhibition or NOTCH1 silencing blocks the transition into endothelial progenitors. These data may provide new perspectives on the mechanisms of failure of anti-angiogenesis inhibitors currently in use. The lineage plasticity and capacity to generate tumour vasculature of the putative cancer stem cells within glioblastoma are novel findings that provide new insight into the biology of gliomas and the definition of cancer stemness, as well as the mechanisms of tumour neo-angiogenesis.


Assuntos
Diferenciação Celular , Células Endoteliais/patologia , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Neovascularização Patológica/patologia , Células-Tronco Neurais/patologia , Antígeno AC133 , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antígenos CD/metabolismo , Bevacizumab , Caderinas/deficiência , Caderinas/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Aberrações Cromossômicas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Feminino , Glioblastoma/genética , Glicoproteínas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Integrina beta4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neurais/metabolismo , Peptídeos/metabolismo , Receptor Notch1/deficiência , Receptor Notch1/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
2.
Mol Cancer Ther ; 14(2): 326-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25512618

RESUMO

Most cancer therapies involve a component of treatment that inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA-damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radiosensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules that selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits that potently inhibit DSB repair, and we have validated their functional activity in a comprehensive panel of orthogonal secondary assays. A selection of these inhibitors was found to radiosensitize cancer cell lines in vitro, which suggests that they may be useful as novel chemo- and radio sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker mibefradil dihydrochloride, that demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a phase I clinical trial testing mibefradil as a glioma radiosensitizer.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala/métodos , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Recombinação Homóloga/efeitos dos fármacos , Humanos , Projetos Piloto , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA