RESUMO
BACKGROUND: Vaginal seeding is the administration of maternal vaginal bacteria to babies following birth by caesarean section (CS), intended to mimic the microbial exposure that occurs during vaginal birth. Appropriate development of the infant gut microbiome assists early immune development and might help reduce the risk of certain health conditions later in life, such as obesity and asthma. We aimed to explore the views of pregnant women on this practice. METHODS: We conducted a sequential mixed-methods study on the views of pregnant women in New Zealand (NZ) on vaginal seeding. Phase one: brief semi-structured interviews with pregnant women participating in a clinical trial of vaginal seeding (n = 15); and phase two: online questionnaire of pregnant women throughout NZ (not in the trial) (n = 264). Reflexive thematic analysis was applied to interview and open-ended questionnaire data. Closed-ended questionnaire responses were analysed using descriptive statistics. RESULTS: Six themes were produced through analysis of the open-ended data: "seeding replicates a natural process", "microbiome is in the media", "seeding may have potential benefits", "seeking validation by a maternity caregiver", "seeding could help reduce CS guilt", and "the unknowns of seeding". The idea that vaginal seeding replicates a natural process was suggested by some as an explanation to help overcome any initial negative perceptions of it. Many considered vaginal seeding to have potential benefit for the gut microbiome, while comparatively fewer considered it to be potentially beneficial for specific conditions such as obesity. Just under 30% of questionnaire respondents (n = 78; 29.5%) had prior knowledge of vaginal seeding, while most (n = 133; 82.6%) had an initially positive or neutral reaction to it. Few respondents changed their initial views on the practice after reading provided evidence-based information (n = 60; 22.7%), but of those who did, most became more positive (n = 51; 86.4%). CONCLUSIONS: Given its apparent acceptability, and if shown to be safe and effective for the prevention of early childhood obesity, vaginal seeding could be a non-stigmatising approach to prevention of this condition among children born by CS. Our findings also highlight the importance of lead maternity carers in NZ remaining current in their knowledge of vaginal seeding research.
Assuntos
Cesárea , Conhecimentos, Atitudes e Prática em Saúde , Gestantes , Cuidado Pré-Natal , Vagina/microbiologia , Adolescente , Adulto , Feminino , Humanos , Recém-Nascido , Entrevistas como Assunto , Microbiota , Nova Zelândia , Gravidez , Inquéritos e Questionários , Adulto JovemRESUMO
The microbiota-gut-brain axis is a promising target to alleviate the growing burden of neurologic and mental health disorders. Dietary polyphenols act on multiple components of the microbiota-gut-brain axis, but this complex relationship requires further attention. This randomized, placebo-controlled, double-blind, crossover trial (ACTRN12622000850774) compared 4 wk of a commercially available flavonoid-rich blackcurrant beverage (FBB; 151 mg anthocyanins, 308 mg total polyphenols) with placebo in 40 healthy females (18-45 y). The primary outcome of stress reactivity was assessed by change in present feelings of stress, mood, and fatigue before and after completing a 20-min cognitive stressor [Purple multitasking framework (MTF)]. Secondary end points included cognitive performance (MTF), mood [profile of mood states (POMS)], sleep (Pittsburgh Sleep Quality Index), fecal microbiome composition and functional potential (shotgun sequencing), and blood biomarker concentrations (brain-derived neurotrophic factor, tryptophan, kynurenine, and interleukin 6). Statistical analyses were conducted on an intention-to-treat basis using linear mixed-effect models. Thirty-eight participants completed both intervention arms. There was no significant treatment effect on the primary outcome of stress reactivity. Compared with placebo, working memory (letter retrieval scores from MTF), and anxiety/tension and anger/hostility domains of the POMS improved with FBB supplementation (time × intervention interaction; P < 0.05). There were no treatment effects on gut microbiome composition or functional potential. Baseline abundances of Bifidobacterium genera and species (Bifidobacterium longum and Bifidobacterium bifidum) tended to be higher in participants with the greatest improvements in letter retrieval scores with FBB supplementation (nominally significant, P < 0.05). In conclusion, 4-wk FBB supplementation improved secondary outcomes of working memory performance during multitasking and mood outcomes in healthy adult females. These results should be confirmed in a larger cohort with a longer duration of follow-up.
RESUMO
BACKGROUND: Horizontal gene transfer (HGT) describes the transmission of DNA outside of direct ancestral lineages. The process is best characterised within the bacterial kingdom and can enable the acquisition of genetic traits that support bacterial adaptation to novel niches. The adaptation of bacteria to novel niches has particular relevance for faecal microbiota transplantation (FMT), a therapeutic procedure which aims to resolve gut-related health conditions of individuals, through transplanted gut microbiota from healthy donors. RESULTS: Three hundred eighty-one stool metagenomic samples from a placebo-controlled FMT trial for obese adolescents (the Gut Bugs Trial) were analysed for HGT, using two complementary methodologies. First, all putative HGT events, including historical HGT signatures, were quantified using the bioinformatics application WAAFLE. Second, metagenomic assembly and gene clustering were used to assess and quantify donor-specific genes transferred to recipients following the intervention. Both methodologies found no difference between the level of putative HGT events in the gut microbiomes of FMT and placebo recipients, post-intervention. HGT events facilitated by engrafted donor species in the FMT recipient gut at 6 weeks post-intervention were identified and characterised. Bacterial strains contributing to this subset of HGT events predominantly belonged to the phylum Bacteroidetes. Engraftment-dependent horizontally transferred genes were retained within recipient microbiomes at 12 and 26 weeks post-intervention. CONCLUSION: Our study suggests that novel microorganisms introduced into the recipient gut following FMT have no impact on the basal rate of HGT within the human gut microbiome. Analyses of further FMT studies are required to assess the generalisability of this conclusion across different FMT study designs and for the treatment of different gut-related conditions. Video Abstract.
Assuntos
Microbioma Gastrointestinal , Microbiota , Obesidade Infantil , Adolescente , Humanos , Transplante de Microbiota Fecal/métodos , Transferência Genética Horizontal , Microbioma Gastrointestinal/genética , Bactérias/genética , Fezes/microbiologia , Resultado do TratamentoRESUMO
Malnutrition affects 195 million children under the age of five worldwide with long term effects that include impaired cognitive development. Brain development occurs rapidly over the first 36 months of life. Whilst seemingly independent, changes to the brain and gut microbiome are linked by metabolites, hormones, and neurotransmitters as part of the gut-brain axis. In the context of severe malnutrition, the composition of the gut microbiome and the repertoire of biochemicals exchanged via the gut-brain axis vary when compared to healthy individuals. These effects are primarily due to the recognized interacting determinants, macro- and micronutrient deficiencies, infection, infestations and toxins related to poor sanitation, and a dearth of psycho-social stimulation. The standard of care for the treatment of severe acute malnutrition is focused on nutritional repletion and weight restoration through the provision of macro- and micronutrients, the latter usually in excess of recommended dietary allowances (RDA). However, existing formulations and supplements have not been designed to specifically address key recovery requirements for brain and gut microbiome development. Animal model studies indicate that treatments targeting the gut microbiome could improve brain development. Despite this, research on humans targeting the gut microbiome with the aim of restoring brain functionality are scarce. We conclude that there is a need for assessment of cognition and the use of various tools that permit visualization of the brain anatomy and function (e.g., Magnetic resonance imaging (MRI), functional near-infrared spectroscopy (fNIRS), electroencephalogram (EEG)) to understand how interventions targeting the gut microbiome impact brain development.
Assuntos
Cognição , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Humanos , Lactente , Cognição/fisiologia , Desenvolvimento Infantil/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/crescimento & desenvolvimento , Animais , Desnutrição/fisiopatologia , Desnutrição/microbiologiaRESUMO
BACKGROUND: Fecal microbiota transplantation (FMT) is a therapeutic intervention used to treat diseases associated with the gut microbiome. In the human gut microbiome, phages have been implicated in influencing human health, with successful engraftment of donor phages correlated with FMT treatment efficacy. The impact that gastrointestinal phages exert on human health has primarily been connected to their ability to modulate the bacterial communities in the gut. Nonetheless, how FMT affects recipients' phage populations, and in turn, how this influences the gut environment, is not yet fully understood. In this study, we investigated the effects of FMT on the phageome composition of participants within the Gut Bugs Trial (GBT), a double-blind, randomized, placebo-controlled trial that investigated the efficacy of FMT in treating obesity and comorbidities in adolescents. Stool samples collected from donors at the time of treatment and recipients at four time points (i.e., baseline and 6 weeks, 12 weeks, and 26 weeks post-intervention), underwent shotgun metagenomic sequencing. Phage sequences were identified and characterized in silico to examine evidence of phage engraftment and to assess the extent of FMT-induced alterations in the recipients' phageome composition. RESULTS: Donor phages engrafted stably in recipients following FMT, composing a significant proportion of their phageome for the entire course of the study (33.8 ± 1.2% in females and 33.9 ± 3.7% in males). Phage engraftment varied between donors and donor engraftment efficacy was positively correlated with their phageome alpha diversity. FMT caused a shift in recipients' phageome toward the donors' composition and increased phageome alpha diversity and variability over time. CONCLUSIONS: FMT significantly altered recipients' phage and, overall, microbial populations. The increase in microbial diversity and variability is consistent with a shift in microbial population dynamics. This proposes that phages play a critical role in modulating the gut environment and suggests novel approaches to understanding the efficacy of FMT in altering the recipient's microbiome. TRIAL REGISTRATION: The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTR N12615001351505). Trial protocol: the trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.
Assuntos
Bacteriófagos , Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Obesidade , Humanos , Transplante de Microbiota Fecal/métodos , Bacteriófagos/fisiologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/genética , Fezes/microbiologia , Fezes/virologia , Obesidade/terapia , Obesidade/microbiologia , Método Duplo-Cego , Feminino , Adolescente , Masculino , Bactérias/classificação , Bactérias/virologia , Bactérias/genética , Metagenômica/métodos , Resultado do TratamentoRESUMO
INTRODUCTION: Autism (formally autism spectrum disorder) encompasses a group of complex neurodevelopmental conditions, characterised by differences in communication and social interactions. Co-occurring chronic gastrointestinal symptoms are common among autistic individuals and can adversely affect their quality of life. This study aims to evaluate the efficacy of oral encapsulated faecal microbiome transfer (FMT) in improving gastrointestinal symptoms and well-being among autistic adolescents and adults. METHODS AND ANALYSIS: This double-blind, randomised, placebo-controlled trial will recruit 100 autistic adolescents and adults aged 16-45 years, who have mild to severe gastrointestinal symptoms (Gastrointestinal Symptoms Rating Scale (GSRS) score ≥2.0). We will also recruit eight healthy donors aged 18-32 years, who will undergo extensive clinical screening. Recipients will be randomised 1:1 to receive FMT or placebo, stratified by biological sex. Capsules will be administered over two consecutive days following an overnight bowel cleanse with follow-up assessments at 6, 12 and 26 weeks post-treatment. The primary outcome is GSRS score at 6 weeks. Other assessments include anthropometry, body composition, hair cortisol concentration, gut microbiome profile, urine/plasma gut-derived metabolites, plasma markers of gut inflammation/permeability and questionnaires on general well-being, sleep quality, physical activity, food diversity and treatment tolerability. Adverse events will be recorded and reviewed by an independent data monitoring committee. ETHICS AND DISSEMINATION: Ethics approval for the study was granted by the Central Health and Disability Ethics Committee on 24 August 2021 (reference number: 21/CEN/211). Results will be published in peer-reviewed journals and presented to both scientific and consumer group audiences. TRIAL REGISTRATION NUMBER: ACTRN12622000015741.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gastroenteropatias , Microbioma Gastrointestinal , Adulto , Humanos , Adolescente , Transtorno Autístico/terapia , Transtorno do Espectro Autista/terapia , Transplante de Microbiota Fecal/métodos , Qualidade de Vida , Gastroenteropatias/terapia , Método Duplo-Cego , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applied to metagenomic sequencing data offer the capacity to detect known and infer yet-unknown resistance mechanisms, and predict future outbreaks of antibiotic-resistant infections. Machine learning methods, in particular, could revive the waning antibiotic discovery pipeline by helping to predict the molecular structure and function of antibiotic resistance compounds, and optimising their interactions with target proteins. Consequently, AI has the capacity to play a central role in guiding antibiotic stewardship and future clinical decision-making around antibiotic resistance.
Assuntos
Inteligência Artificial , Bactérias , Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/metabolismoRESUMO
INTRODUCTION: Individuals with anorexia nervosa (AN) harbour distinct gut microbiomes compared with healthy individuals, which are sufficient to induce weight loss and anxiety-like behaviours when transplanted into germ-free mice. We hypothesise that faecal microbiome transfer (FMT) from healthy donors would help restore the gut microbiome of individuals with AN, which in turn, may aid patient recovery. METHODS: We aim to conduct an open-label pilot study in 20 females aged 16-32 years in Auckland, New Zealand who meet the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) criteria for AN and have a body mass index 13-19 kg/m2. We will recruit four healthy, lean, female donors, aged 18-32 years, who will undergo extensive clinical screening prior to stool donation. Faecal microbiota will be harvested from donors and double encapsulated in delayed release, acid-resistant capsules. All participants will receive a single course of 20 FMT capsules (five from each donor) which they can choose to take over two or four consecutive days. Stool and blood samples will be collected from participants over a period of 3 months to assess their gut microbiome profile, metabolome, levels of intestinal inflammation and nutritional status. Our primary outcome is a shift in the gut microbiome composition at 3 weeks post-FMT (Bray-Curtis dissimilarity). We will also monitor participants' body composition (whole-body dual-energy X-ray absorptiometry scans), eating disorder psychopathology, mental health and assess their views on, and tolerability of, treatment. All adverse events will be recorded and reviewed by an independent data monitoring committee. ETHICS AND DISSEMINATION: Ethics approval was provided by the Central Health and Disability Ethics Committee (Ministry of Health, New Zealand, 21/CEN/212). Results will be published in peer-reviewed journals and presented to both scientific and consumer group audiences. TRIAL REGISTRATION NUMBER: ACTRN12621001504808.
Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Microbiota , Feminino , Anorexia Nervosa/terapia , Cápsulas , Projetos Piloto , Humanos , Adolescente , Adulto Jovem , AdultoRESUMO
BACKGROUND: In animal models, prenatal zinc deficiency induced epigenetic changes in the fetus, but data in humans are lacking. We aimed to examine associations between maternal zinc levels during pregnancy and DNA methylation in LINE-1 and Alu repetitive sequences in young adult offspring, as well as anthropometry and cardiometabolic parameters. METHODS: Participants were 74 pregnant women from the Chiang Mai Low Birth Weight cohort, and their offspring followed up at 20 years of age. Maternal plasma zinc concentrations were measured at approximately 36 weeks of gestation. DNA methylation levels in LINE-1 and Alu repetitive sequences were measured in the offspring, as well as anthropometry and cardiometabolic parameters (lipid profile, blood pressure, and glucose metabolism). RESULTS: Over half of mothers (39/74; 53%) were zinc deficient (<50 µg/dL) during their third trimester of pregnancy. Maternal zinc concentrations during pregnancy were associated with LINE-1 DNA methylation levels in adult offspring. Specifically, lower prenatal zinc concentrations were associated with: 1) lower levels of total LINE-1 methylation; 2) lower levels of LINE-1 hypermethylation loci; and 3) higher levels of LINE-1 partial methylation loci. Prenatal zinc concentrations were not associated with Alu methylation levels, nor with any anthropometric or cardiometabolic parameters in adult offspring. However, we observed associations between Alu and LINE-1 methylation patterns and cardiometabolic outcomes in offspring, namely total cholesterol levels and diastolic blood pressure, respectively. CONCLUSIONS: Lower maternal zinc concentrations late in gestation were associated with changes in DNA methylation in later life. Thus, zinc deficiency during pregnancy may induce alterations in total LINE-1 methylation and LINE-1 hypermethylation loci. These results suggest a possible epigenetic link between zinc deficiency during pregnancy and long-term outcomes in the offspring.
Assuntos
Filhos Adultos , Doenças Cardiovasculares , Adulto Jovem , Gravidez , Humanos , Feminino , Zinco , Metilação de DNA , Epigênese Genética , Doenças Cardiovasculares/genéticaRESUMO
BACKGROUND: Birth by caesarean section (CS) is associated with aberrant gut microbiome development and greater disease susceptibility later in life. We investigated whether oral administration of maternal vaginal microbiota to infants born by CS could restore their gut microbiome development in a pilot single-blinded, randomised placebo-controlled trial (Australian New Zealand Clinical Trials Registry, ACTRN12618000339257). METHODS: Pregnant women scheduled for a CS underwent comprehensive antenatal pathogen screening. At birth, healthy neonates were randomised to receive a 3 ml solution of either maternal vaginal microbes (CS-seeded, n = 12) or sterile water (CS-placebo, n = 13). Vaginally-born neonates were used as the reference control (VB, n = 22). Clinical assessments occurred within the first 2 h of birth, and at 1 month and 3 months of age. Infant stool samples and maternal vaginal extracts from CS women underwent shotgun metagenomic sequencing. The primary outcome was gut microbiome composition at 1 month of age. Secondary outcomes included maternal strain engraftment, functional potential of the gut microbiome, anthropometry, body composition, and adverse events. FINDINGS: Despite the presence of viable microbial cells within transplant solutions, there were no observed differences in gut microbiome composition or functional potential between CS-seeded and CS-placebo infants at 1 month or 3 months of age. Both CS groups displayed the characteristic signature of low Bacteroides abundance, which contributed to a number of biosynthesis pathways being underrepresented when compared with VB microbiomes. Maternal vaginal strain engraftment was rare. Vaginal seeding had no observed effects on anthropometry or body composition. There were no serious adverse events associated with treatment. INTERPRETATION: Our pilot findings question the value of vaginal seeding given that oral administration of maternal vaginal microbiota did not alter early gut microbiome development in CS-born infants. The limited colonisation of maternal vaginal strains suggest that other maternal sources, such as the perianal area, may play a larger role in seeding the neonatal gut microbiome. FUNDING: Health Research Council of New Zealand, A Better Start - National Science Challenge.
Assuntos
Cesárea/efeitos adversos , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal , Doenças do Recém-Nascido/microbiologia , Vagina/microbiologia , Administração Oral , Adulto , Bacteroides/patogenicidade , Transplante de Microbiota Fecal/efeitos adversos , Feminino , Humanos , Recém-Nascido , Doenças do Recém-Nascido/etiologia , Doenças do Recém-Nascido/prevenção & controle , MasculinoRESUMO
BACKGROUND: Donor selection is an important factor influencing the engraftment and efficacy of fecal microbiota transplantation (FMT) for complex conditions associated with microbial dysbiosis. However, the degree, variation, and stability of strain engraftment have not yet been assessed in the context of multiple donors. METHODS: We conducted a double-blinded randomized control trial of FMT in 87 adolescents with obesity. Participants were randomized to receive multi-donor FMT (capsules containing the fecal microbiota of four sex-matched lean donors) or placebo (saline capsules). Following a bowel cleanse, participants ingested a total of 28 capsules over two consecutive days. Capsules from individual donors and participant stool samples collected at baseline, 6, 12, and 26 weeks post-treatment were analyzed by shotgun metagenomic sequencing allowing us to track bacterial strain engraftment and its functional implications on recipients' gut microbiomes. RESULTS: Multi-donor FMT sustainably altered the structure and the function of the gut microbiome. In what was effectively a microbiome competition experiment, we discovered that two donor microbiomes (one female, one male) dominated strain engraftment and were characterized by high microbial diversity and a high Prevotella to Bacteroides (P/B) ratio. Engrafted strains led to enterotype-level shifts in community composition and provided genes that altered the metabolic potential of the community. Despite our attempts to standardize FMT dose and origin, FMT recipients varied widely in their engraftment of donor strains. CONCLUSION: Our study provides evidence for the existence of FMT super-donors whose microbiomes are highly effective at engrafting in the recipient gut. Dominant engrafting male and female donor microbiomes harbored diverse microbial species and genes and were characterized by a high P/B ratio. Yet, the high variability of strain engraftment among FMT recipients suggests the host environment also plays a critical role in mediating FMT receptivity. TRIAL REGISTRATION: The Gut Bugs trial was registered with the Australian New Zealand Clinical Trials Registry ( ACTRN12615001351505 ). TRIAL PROTOCOL: The trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.
Assuntos
Disbiose , Transplante de Microbiota Fecal , Adolescente , Austrália , Disbiose/terapia , Fezes , Feminino , Humanos , Masculino , Obesidade/terapia , Resultado do TratamentoRESUMO
Zbtb11 is a conserved transcription factor mutated in families with hereditary intellectual disability. Its precise molecular and cellular functions are currently unknown, precluding our understanding of the aetiology of this disease. Using a combination of functional genomics, genetic and biochemical approaches, here we show that Zbtb11 plays essential roles in maintaining the homeostasis of mitochondrial function. Mechanistically, we find Zbtb11 facilitates the recruitment of nuclear respiratory factor 2 (NRF-2) to its target promoters, activating a subset of nuclear genes with roles in the biogenesis of respiratory complex I and the mitoribosome. Genetic inactivation of Zbtb11 resulted in a severe complex I assembly defect, impaired mitochondrial respiration, mitochondrial depolarisation, and ultimately proliferation arrest and cell death. Experimental modelling of the pathogenic human mutations showed these have a destabilising effect on the protein, resulting in reduced Zbtb11 dosage, downregulation of its target genes, and impaired complex I biogenesis. Our study establishes Zbtb11 as an essential mitochondrial regulator, improves our understanding of the transcriptional mechanisms of nuclear control over mitochondria, and may help to understand the aetiology of Zbtb11-associated intellectual disability.
Assuntos
Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Deficiência Intelectual/genética , Mitocôndrias/metabolismo , Dedos de Zinco/genética , Animais , Linhagem Celular , DNA Mitocondrial , Complexo I de Transporte de Elétrons/biossíntese , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Deficiência Intelectual/etiologia , Camundongos , Mutação/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genéticaRESUMO
INTRODUCTION: There is evidence that caesarean section (CS) is associated with increased risk of childhood obesity, asthma, and coeliac disease. The gut microbiota of CS-born babies differs to those born vaginally, possibly due to reduced exposure to maternal vaginal bacteria during birth. Vaginal seeding is a currently unproven practice intended to reduce such differences, so that the gut microbiota of CS-born babies is similar to that of babies born vaginally. Our pilot study, which uses oral administration as a novel form of vaginal seeding, will assess the degree of maternal strain transfer and overall efficacy of the procedure for establishing normal gut microbiota development. METHODS AND ANALYSIS: Protocol for a single-blinded, randomized, placebo-controlled pilot study of a previously untested method of vaginal seeding (oral administration) in 30 CS-born babies. A sample of maternal vaginal bacteria is obtained prior to CS, and mixed with 5 ml sterile water to obtain a supernatant. Healthy babies are randomized at 1:1 to receive active treatment (3âml supernatant) or placebo (3âml sterile water). A reference group of 15 non-randomized vaginal-born babies are also being recruited. Babies' stool samples will undergo whole metagenomic shotgun sequencing to identify potential differences in community structure between CS babies receiving active treatment compared to those receiving placebo at age 1 month (primary outcome). Secondary outcomes include differences in overall gut community between CS groups (24âhours, 3 months); similarity of CS-seeded and placebo gut profiles to vaginally-born babies (24âhours, 1 and 3 months); degree of maternal vaginal strain transfer in CS-born babies (24âhours, 1 and 3 months); anthropometry (1 and 3 months) and body composition (3 months). ETHICS AND DISSEMINATION: Ethics approval by the Northern A Health and Disability Ethics Committee (18/NTA/49). Results will be published in peer-reviewed journals and presented at international conferences. REGISTRATION: Australian New Zealand Clinical Trials Registry (ACTRN12618000339257).
Assuntos
Cesárea/efeitos adversos , Microbiota/fisiologia , Placebos/administração & dosagem , Vagina/microbiologia , Adulto , Antropometria/métodos , Asma/epidemiologia , Asma/etiologia , Fenômenos Fisiológicos Bacterianos , Composição Corporal , Estudos de Casos e Controles , Doença Celíaca/epidemiologia , Doença Celíaca/etiologia , Parto Obstétrico/tendências , Fezes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metagenômica/métodos , Microbiota/genética , Nova Zelândia/epidemiologia , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , GravidezRESUMO
Importance: Treatment of pediatric obesity is challenging. Preclinical studies in mice indicated that weight and metabolism can be altered by gut microbiome manipulation. Objective: To assess efficacy of fecal microbiome transfer (FMT) to treat adolescent obesity and improve metabolism. Design, Setting, and Participants: This randomized, double-masked, placebo-controlled trial (October 2017-March 2019) with a 26-week follow-up was conducted among adolescents aged 14 to 18 years with a body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) of 30 or more in Auckland, New Zealand. A total of 87 individuals took part-565 individuals responded to advertisements, 328 were ineligible, and 150 declined participation. Clinical data were analyzed from September 2019 to May 2020. Interventions: Single course of oral encapsulated fecal microbiome from 4 healthy lean donors of the same sex or saline placebo. Main Outcomes and Measures: Primary outcome was BMI standard deviation score at 6 weeks using intention-to-treat analysis. Secondary outcomes included body composition, cardiometabolic parameters, well-being, and gut microbiome composition. Results: Eighty-seven participants (59% female adolescents, mean [SD] age 17.2 [1.4] years) were randomized 1:1, in groups stratified by sex, to FMT (42 participants) or placebo (45 participants). There was no effect of FMT on BMI standard deviation score at 6 weeks (adjusted mean difference [aMD] -0.026; 95% CI -0.074, 0.022). Reductions in android-to-gynoid-fat ratio in the FMT vs placebo group were observed at 6, 12, and 26 weeks, with aMDs of -0.021 (95% CI, -0.041 to -0.001), -0.023 (95% CI, -0.043 to -0.003), and -0.029 (95% CI, -0.049 to -0.008), respectively. There were no observed effects on insulin sensitivity, liver function, lipid profile, inflammatory markers, blood pressure, total body fat percentage, gut health, and health-related quality of life. Gut microbiome profiling revealed a shift in community composition among the FMT group, maintained up to 12 weeks. In post-hoc exploratory analyses among participants with metabolic syndrome at baseline, FMT led to greater resolution of this condition (18 to 4) compared with placebo (13 to 10) by 26 weeks (adjusted odds ratio, 0.06; 95% CI, 0.01-0.45; P = .007). There were no serious adverse events recorded throughout the trial. Conclusions and Relevance: In this randomized clinical trial of adolescents with obesite, there was no effect of FMT on weight loss in adolescents with obesity, although a reduction in abdominal adiposity was observed. Post-hoc analyses indicated a resolution of undiagnosed metabolic syndrome with FMT among those with this condition. Further trials are needed to confirm these results and identify organisms and mechanisms responsible for mediating the observed benefits. Trial Registration: Australian New Zealand Clinical Trials Registry Identifier: ACTRN12615001351505.
Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Obesidade Infantil , Qualidade de Vida , Adolescente , Índice de Massa Corporal , Método Duplo-Cego , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/métodos , Feminino , Humanos , Masculino , Monitorização Fisiológica/métodos , Nova Zelândia , Obesidade Infantil/metabolismo , Obesidade Infantil/fisiopatologia , Obesidade Infantil/psicologia , Obesidade Infantil/terapia , Resultado do TratamentoRESUMO
Metabolic diseases are increasing among adolescents with obesity. Although the reported prevalence of metabolic syndrome is approximately 30% worldwide, its prevalence is largely unknown among New Zealand adolescents. Therefore, we assessed the health of adolescents with obesity (BMI ≥ 30 kg/m2) enrolled in a randomised clinical trial (Gut Bugs Trial), to identify the prevalence of undiagnosed comorbidities. Assessments included anthropometry, 24-h ambulatory blood pressure monitoring, and insulin sensitivity. We report on baseline data (pre-randomisation) on 87 participants (14-18 years; 59% females), with mean BMI 36.9 ± 5.3 kg/m2 (BMI SDS 3.33 ± 0.79). Approximately 40% of participants had undiagnosed metabolic syndrome, which was twice as common among males. Half (53%) had pre-diabetes and 92% a reduction in insulin sensitivity. Moreover, 31% had pre-hypertension/hypertension, 69% dyslipidaemia, and 25% abnormal liver function. Participants with class III obesity had a greater risk of metabolic syndrome than those with classes I/II [relative risk 1.99 (95% CI 1.19, 3.34)]. Risks for pre-hypertension/hypertension and inflammation were also greater among those with class III obesity. We identified a high prevalence of undiagnosed comorbidities among adolescents with obesity in New Zealand. As adolescent obesity tracks into adulthood, early interventions are needed to prevent progression to overt cardiometabolic diseases.
Assuntos
Síndrome Metabólica/epidemiologia , Obesidade Infantil/epidemiologia , Estado Pré-Diabético/epidemiologia , Doenças não Diagnosticadas/epidemiologia , Adolescente , Monitorização Ambulatorial da Pressão Arterial , Índice de Massa Corporal , Comorbidade , Dislipidemias/epidemiologia , Feminino , Humanos , Resistência à Insulina , Masculino , Nova Zelândia/epidemiologia , Pré-Hipertensão/epidemiologia , Prevalência , Fatores Socioeconômicos , Circunferência da CinturaRESUMO
Fecal microbiota transplantation (FMT) has become a highly effective bacteriotherapy for recurrent Clostridium difficile infection. Meanwhile the efficacy of FMT for treating chronic diseases associated with microbial dysbiosis has so far been modest with a much higher variability in patient response. Notably, a number of studies suggest that FMT success is dependent on the microbial diversity and composition of the stool donor, leading to the proposition of the existence of FMT super-donors. The identification and subsequent characterization of super-donor gut microbiomes will inevitably advance our understanding of the microbial component of chronic diseases and allow for more targeted bacteriotherapy approaches in the future. Here, we review the evidence for super-donors in FMT and explore the concept of keystone species as predictors of FMT success. Possible effects of host-genetics and diet on FMT engraftment and maintenance are also considered. Finally, we discuss the potential long-term applicability of FMT for chronic disease and highlight how super-donors could provide the basis for dysbiosis-matched FMTs.