Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Orthop Relat Res ; 473(9): 2908-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26070773

RESUMO

BACKGROUND: Extremity trauma is the most common injury seen in combat hospitals as well as in civilian trauma centers. Major skeletal muscle injuries that are complicated by ischemia often result in substantial muscle loss, residual disability, or even amputation, yet few treatment options are available. A therapy that would increase skeletal muscle tolerance to hypoxic damage could reduce acute myocyte loss and enhance preservation of muscle mass in these situations. QUESTIONS/PURPOSES: In these experiments, we investigated (1) whether cobalt protoporphyrin (CoPP), a pharmacologic inducer of cytoprotective heme oxygenase-1 (HO-1), would upregulate HO-1 expression and activity in skeletal muscle, tested in muscle-derived stem cells (MDSCs); and (2) whether CoPP exposure would protect MDSCs from cell death during in vitro hypoxia/reoxygenation. Then, using an in vivo mouse model of hindlimb ischemia/reperfusion injury, we examined (3) whether CoPP pharmacotherapy would reduce skeletal muscle damage when delivered after injury; and (4) whether it would alter the host inflammatory response to injury. METHODS: MDSCs were exposed in vitro to a single dose of 25 µΜ CoPP and harvested over 24 to 96 hours, assessing HO-1 protein expression by Western blot densitometry and HO-1 enzyme activity by cGMP levels. To generate hypoxia/reoxygenation stress, MDSCs were treated in vitro with phosphate-buffered saline (vehicle), CoPP, or CoPP plus an HO-1 inhibitor, tin protoporphyrin (SnPP), and then subjected to 5 hours of hypoxia (< 0.5% O2) followed by 24 hours of reoxygenation and evaluated for apoptosis. In vivo, hindlimb ischemia/reperfusion injury was produced in mice by unilateral 2-hour tourniquet application followed by 24 hours of reperfusion. In three postinjury treatment groups (n = 7 mice/group), CoPP was administered intraperitoneally during ischemia, at the onset of reperfusion, or 1 hour later. Two control groups of mice with the same injury received phosphate-buffered saline (vehicle) or the HO-1 inhibitor, SnPP. Myocyte damage in the gastrocnemius and tibialis anterior muscles was determined by uptake of intraperitoneally delivered Evans blue dye (EBD), quantified by image analysis. On serial sections, inflammation was gauged by the mean myeloperoxidase staining intensity per unit area over the entirety of each muscle. RESULTS: In MDSCs, a single exposure to CoPP increased HO-1 protein expression and enzyme activity, both of which were sustained for 96 hours. CoPP treatment of MDSCs reduced apoptotic cell populations by 55% after in vitro hypoxia/reoxygenation injury (from a mean of 57.3% apoptotic cells in vehicle-treated controls to 25.7% in CoPP-treated cells, mean difference 31.6%; confidence interval [CI], 28.1-35.0; p < 0.001). In the hindlimb ischemia/reperfusion model, CoPP delivered during ischemia produced a 38% reduction in myocyte damage in the gastrocnemius muscle (from 86.4% ± 7% EBD(+) myofibers in vehicle-treated, injured controls to 53.2% EBD(+) in CoPP-treated muscle, mean difference 33.2%; 95% CI, 18.3, 48.4; p < 0.001). A 30% reduction in injury to the gastrocnemius was seen with drug delivery at the onset of reperfusion (to 60.6% ± 13% EBD(+) with CoPP treatment, mean difference 25.8%; CI, 12.2-39.4; p < 0.001). In the tibialis anterior, however, myocyte damage was decreased only when CoPP was given at the onset of reperfusion, resulting in a 27% reduction in injury (from 78.8% ± 8% EBD(+) myofibers in injured controls to 58.3% ± 14% with CoPP treatment, mean difference 20.5%; CI, 6.1-35.0; p = 0.004). Delaying CoPP delivery until 1 hour after tourniquet release obviated the protective effect in both muscles. Mean MPO staining intensity per unit area, indicating the host inflammatory response, decreased by 27-34% across both the gastrocnemius and tibialis anterior muscles when CoPP was given either during ischemia or at the time of reperfusion. Delaying drug delivery until 1 hour after the start of reperfusion abrogated this antiinflammatory effect. CONCLUSIONS: CoPP can decrease skeletal muscle damage when given early in the course of ischemia/reperfusion injury and also provide protection for regenerative stem cell populations. CLINICAL RELEVANCE: Pharmacotherapy with HO-1 inducers, delivered in the field, on hospital arrival, or during trauma surgery, may improve preservation of muscle mass and muscle-inherent stem cells after severe ischemic limb injury.


Assuntos
Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Protoporfirinas/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Células-Tronco/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Citoproteção , Modelos Animais de Doenças , Indução Enzimática , Inibidores Enzimáticos/farmacologia , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/biossíntese , Membro Posterior , Mediadores da Inflamação/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/biossíntese , Camundongos Endogâmicos C57BL , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Regeneração/efeitos dos fármacos , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Células-Tronco/enzimologia , Células-Tronco/patologia , Fatores de Tempo
2.
Cell Growth Differ ; 13(5): 205-13, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12065244

RESUMO

Elevated insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) mRNA in senescent human mammary epithelial cells suggested that the IGFBP-3 gene product may inhibit cell proliferation. To test this hypothesis, we used a retroviral vector to express IGFBP-rP1 cDNA in the IGFBP-rP1-deficient MCF-7 breast cancer cell line. Compared with control vector-transduced cells, cumulative cell numbers for IGFBP-rP1-transduced polyclonal or clonal cell cultures were reduced by 39 and 74%, respectively, after 1 week. Medium conditioned by IGFBP-rP1-producing cultures reduced cumulative cell numbers in parental MCF-7 cultures by 20% compared with medium from cultures of a control vector-transduced cell line. Nuclear fragmentation analysis and cell proliferation assays completed in the presence of the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone excluded apoptosis as the responsible mechanism. The percentage of cells containing senescence-associated beta-galactosidase activity was doubled compared with control cell cultures. Flow cytometry analysis indicated that twice as many noncycling cells were present in the IGFBP-rP1-transduced MCF-7 cell cultures compared with controls. These findings indicate that IGFBP-rP1 is an inhibitor of MCF-7 breast cancer cell proliferation and may act via a cellular senescence-like mechanism.


Assuntos
Neoplasias da Mama , Proteínas de Transporte/metabolismo , Senescência Celular/fisiologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Clorometilcetonas de Aminoácidos/farmacologia , Proteínas de Transporte/genética , Inibidores de Caspase , Divisão Celular/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Fragmentação do DNA/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução Genética , Células Tumorais Cultivadas , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
3.
Lab Invest ; 84(3): 342-52, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14704719

RESUMO

Recent studies in lymphohemopoietic cells show that transferrin (Tf), a pivotal component of iron transport and metabolism, also exerts cytoprotective functions. We show here in a murine model that Tf interferes with Fas-mediated hepatocyte death and liver failure. The mechanism involves the downregulation of apoptosis via BID, cytochrome c, caspase-3 and caspase-9, and upregulation of antiapoptotic signals via Bcl-xL. The results obtained with iron-saturated Tf, Apo-Tf and the iron-chelator salicylaldehyde isonicotinoyl hydrazone indicate that the observed antiapoptotic effect of Tf was not mediated by iron alone. In conclusion, the data suggest that Tf has broader functions than previously recognized and may serve as a cytoprotective agent.


Assuntos
Falência Hepática/prevenção & controle , Transferrina/farmacologia , Receptor fas/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/metabolismo , Caspase 3 , Caspase 9 , Caspases/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Citoproteção , Ativação Enzimática/efeitos dos fármacos , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Ferro/metabolismo , Falência Hepática/etiologia , Falência Hepática/patologia , Falência Hepática/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA