Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 199(7): 686-691, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000223

RESUMO

PURPOSE: 4D CT imaging is an integral part of 4D radiotherapy workflows. However, 4D CT data often contain motion artifacts that mitigate treatment planning. Recently, breathing-adapted 4D CT (i4DCT) was introduced into clinical practice, promising artifact reduction in in-silico and phantom studies. Here, we present an image quality comparison study, pooling clinical patient data from two centers: a new i4DCT and a conventional spiral 4D CT patient cohort. METHODS: The i4DCT cohort comprises 129 and the conventional spiral 4D CT cohort 417 4D CT data sets of lung and liver tumor patients. All data were acquired for treatment planning. The study consists of three parts: illustration of image quality in selected patients of the two cohorts with similar breathing patterns; an image quality expert rater study; and automated analysis of the artifact frequency. RESULTS: Image data of the patients with similar breathing patterns underline artifact reduction by i4DCT compared to conventional spiral 4D CT. Based on a subgroup of 50 patients with irregular breathing patterns, the rater study reveals a fraction of almost artifact-free scans of 89% for i4DCT and only 25% for conventional 4D CT; the quantitative analysis indicated a reduction of artifact frequency by 31% for i4DCT. CONCLUSION: The results demonstrate 4D CT image quality improvement for patients with irregular breathing patterns by breathing-adapted 4D CT in this first corresponding clinical data image quality comparison study.


Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares , Humanos , Tomografia Computadorizada Quadridimensional/métodos , Respiração , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Movimento (Física)
2.
Med Phys ; 51(5): 3173-3183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536107

RESUMO

BACKGROUND: Stereotactic body radiotherapy of thoracic and abdominal tumors has to account for respiratory intrafractional tumor motion. Commonly, an external breathing signal is continuously acquired that serves as a surrogate of the tumor motion and forms the basis of strategies like breathing-guided imaging and gated dose delivery. However, due to inherent system latencies, there exists a temporal lag between the acquired respiratory signal and the system response. Respiratory signal prediction models aim to compensate for the time delays and to improve imaging and dose delivery. PURPOSE: The present study explores and compares six state-of-the-art machine and deep learning-based prediction models, focusing on real-time and real-world applicability. All models and data are provided as open source and data to ensure reproducibility of the results and foster reuse. METHODS: The study was based on 2502 breathing signals ( t t o t a l ≈ 90 $t_{total} \approx 90$  h) acquired during clinical routine, split into independent training (50%), validation (20%), and test sets (30%). Input signal values were sampled from noisy signals, and the target signal values were selected from corresponding denoised signals. A standard linear prediction model (Linear), two state-of-the-art models in general univariate signal prediction (Dlinear, Xgboost), and three deep learning models (Lstm, Trans-Enc, Trans-TSF) were chosen. The prediction performance was evaluated for three different prediction horizons (480, 680, and 920 ms). Moreover, the robustness of the different models when applied to atypical, that is, out-of-distribution (OOD) signals, was analyzed. RESULTS: The Lstm model achieved the lowest normalized root mean square error for all prediction horizons. The prediction errors only slightly increased for longer horizons. However, a substantial spread of the error values across the test signals was observed. Compared to typical, that is, in-distribution test signals, the prediction accuracy of all models decreased when applied to OOD signals. The more complex deep learning models Lstm and Trans-Enc showed the least performance loss, while the performance of simpler models like Linear dropped the most. Except for Trans-Enc, inference times for the different models allowed for real-time application. CONCLUSION: The application of the Lstm model achieved the lowest prediction errors. Simpler prediction filters suffer from limited signal history access, resulting in a drop in performance for OOD signals.


Assuntos
Benchmarking , Aprendizado de Máquina , Radiocirurgia , Respiração , Radiocirurgia/métodos , Humanos , Fatores de Tempo , Aprendizado Profundo , Tomografia Computadorizada Quadridimensional
3.
Med Phys ; 51(10): 7119-7126, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39172134

RESUMO

BACKGROUND: Breathing signal-guided 4D CT sequence scanning such as the intelligent 4D CT (i4DCT) approach reduces imaging artifacts compared to conventional 4D CT. By design, i4DCT captures entire breathing cycles during beam-on periods, leading to redundant projection data and increased radiation exposure to patients exhibiting prolonged exhalation phases. A recently proposed breathing-guided dose modulation (DM) algorithm promises to lower the imaging dose by temporarily reducing the CT tube current, but the impact on image reconstruction and the resulting images have not been investigated. PURPOSE: We evaluate the impact of breathing signal-guided DM on 4D CT image reconstruction and corresponding images. METHODS: This study is designed as a comparative and retrospective analysis based on 104 4D CT datasets. Each dataset underwent retrospective reconstruction twice: (a) utilizing the acquired clinical projection data for reconstruction, which yields reference image data, and (b) excluding projections acquired during potential DM phases from image reconstruction, resulting in DM-affected image data. Resulting images underwent automatic organ segmentation (lung/liver). (Dis)Similarity of reference and DM-affected images were quantified by the Dice coefficient of the entire organ masks and the organ overlaps within the DM-affected slices. Further, for lung cases, (a) and (b) were deformably registered and median magnitudes of the obtained displacement field were computed. Eventually, for 17 lung cases, gross tumor volumes (GTV) were recontoured on both (a) and (b). Target volume similarity was quantified by the Hausdorff distance. RESULTS: DM resulted in a median imaging dose reduction of 15.4% (interquartile range [IQR]: 11.3%-19.9%) for the present patient cohort. Dice coefficients for lung ( n = 73 $n=73$ ) and liver ( n = 31 $n=31$ ) patients were consistently high for both the entire organs and the DM-affected slices (IQR lung: 0.985 / 0.982 $0.985/0.982$ [entire lung/DM-affected slices only] to 0.992 / 0.989 $0.992/0.989$ ; IQR liver: 0.977 / 0.972 $0.977/0.972$ to 0.986 / 0.986 $0.986/0.986$ ), demonstrating that DM did not cause organ distortions or alterations. Median displacements for DM-affected to reference image registration varied; however, only two out of 73 cases exhibited a median displacement larger than one isotropic 1 mm 3 ${\rm mm}^3$ voxel size. The impact on GTV definition for the end-exhalation phase was also minor (median Hausdorff distance: 0.38 mm, IQR: 0.15-0.46 mm). CONCLUSION: This study demonstrates that breathing signal-guided DM has a minimal impact on image reconstruction and image appearance while improving patient safety by reducing dose exposure.


Assuntos
Tomografia Computadorizada Quadridimensional , Processamento de Imagem Assistida por Computador , Doses de Radiação , Respiração , Humanos , Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Algoritmos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Artefatos
4.
Med Phys ; 50(12): 7539-7547, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831550

RESUMO

BACKGROUND: Respiratory signal-guided 4D CT sequence scanning such as the recently introduced Intelligent 4D CT (i4DCT) approach reduces image artifacts compared to conventional 4D CT, especially for irregular breathing. i4DCT selects beam-on periods during scanning such that data sufficiency conditions are fulfilled for each couch position. However, covering entire breathing cycles during beam-on periods leads to redundant projection data and unnecessary dose to the patient during long exhalation phases. PURPOSE: We propose and evaluate the feasibility of respiratory signal-guided dose modulation (i.e., temporary reduction of the CT tube current) to reduce the i4DCT imaging dose while maintaining high projection data coverage for image reconstruction. METHODS: The study is designed as an in-silico feasibility study. Dose down- and up-regulation criteria were defined based on the patients' breathing signals and their representative breathing cycle learned before and during scanning. The evaluation (including an analysis of the impact of the dose modulation criteria parameters) was based on 510 clinical 4D CT breathing curves. Dose reduction was determined as the fraction of the downregulated dose delivery time to the overall beam-on time. Furthermore, under the assumption of a 10-phase 4D CT and amplitude-based reconstruction, beam-on periods were considered negatively affected by dose modulation if the downregulation period covered an entire phase-specific amplitude range for a specific breathing phase (i.e., no appropriate reconstruction of the phase image possible for this specific beam-on period). Corresponding phase-specific amplitude bins are subsequently denoted as compromised bins. RESULTS: Dose modulation resulted in a median dose reduction of 10.4% (lower quartile: 7.4%, upper quartile: 13.8%, maximum: 28.6%; all values corresponding to a default parameterization of the dose modulation criteria). Compromised bins were observed in 1.0% of the beam-on periods (72 / 7370 periods) and affected 10.6% of the curves (54/510 curves). The extent of possible dose modulation depends strongly on the individual breathing patterns and is weakly correlated with the median breathing cycle length (Spearman correlation coefficient 0.22, p < 0.001). Moreover, the fraction of beam-on periods with compromised bins is weakly anti-correlated with the patient's median breathing cycle length (Spearman correlation coefficient -0.24; p < 0.001). Among the curves with the 17% longest average breathing cycles, no negatively affected beam-on periods were observed. CONCLUSION: Respiratory signal-guided dose modulation for i4DCT imaging is feasible and promises to significantly reduce the imaging dose with little impact on projection data coverage. However, the impact on image quality remains to be investigated in a follow-up study.


Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares , Humanos , Tomografia Computadorizada Quadridimensional/métodos , Estudos de Viabilidade , Redução da Medicação , Seguimentos , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA