Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(5): E602-E615, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353640

RESUMO

We previously demonstrated impaired placental nutrient transfer in chorionic somatomammotropin (CSH) RNA interference (RNAi) pregnancies, with glucose transfer being the most impacted. Thus, we hypothesized that despite experimentally elevating maternal glucose, diminished umbilical glucose uptake would persist in CSH RNAi pregnancies, demonstrating the necessity of CSH for adequate placental glucose transfer. Trophectoderm of sheep blastocysts (9 days of gestational age; dGA) were infected with a lentivirus expressing either nontargeting control (CON RNAi; n = 5) or CSH-specific shRNA (CSH RNAi; n = 7) before transfer into recipient sheep. At 126 dGA, pregnancies were fitted with vascular catheters and underwent steady-state metabolic studies (3H2O transplacental diffusion) at 137 ± 0 dGA, before and during a maternal hyperglycemic clamp. Umbilical glucose and oxygen uptakes, as well as insulin and IGF1 concentrations, were impaired (P ≤ 0.01) in CSH RNAi fetuses and were not rescued by elevated maternal glucose. This is partially due to impaired uterine and umbilical blood flow (P ≤ 0.01). However, uteroplacental oxygen utilization was greater (P ≤ 0.05) during the maternal hyperglycemic clamp, consistent with greater placental oxidation of substrates. The relationship between umbilical glucose uptake and the maternal-fetal glucose gradient was analyzed, and while the slope (CON RNAi, Y = 29.54X +74.15; CSH RNAi, Y = 19.05X + 52.40) was not different, the y-intercepts and elevation were (P = 0.003), indicating reduced maximal glucose transport during maternal hyperglycemia. Together, these data suggested that CSH plays a key role in modulating placental metabolism that ultimately promotes maximal placental glucose transfer.NEW & NOTEWORTHY The current study demonstrated a novel, critical autocrine role for chorionic somatomammotropin in augmenting placental glucose transfer and maintaining placental oxidative metabolism. In pregnancies with CSH deficiency, excess glucose in maternal circulation is insufficient to overcome fetal hypoglycemia due to impaired placental glucose transfer and elevated placental metabolic demands. This suggests that perturbations in glucose transfer in CSH RNAi pregnancies are due to compromised metabolic efficiency along with reduced placental mass.


Assuntos
Glucose , Placenta , Gravidez , Feminino , Animais , Ovinos , Placenta/metabolismo , Glucose/metabolismo , Interferência de RNA , Lactogênio Placentário/metabolismo , Oxigênio/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731997

RESUMO

Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights. These findings led us to subject RNA derived from SLC2A3-RNAi (RNA interference) and NTS-RNAi (non-targeting sequence) fetal pancreases to qPCR followed by transcriptomic analysis. We identified a total of 771 differentially expressed genes (DEGs). Upregulated pathways were associated with fat digestion and absorption, particularly fatty acid transport, lipid metabolism, and cholesterol biosynthesis, suggesting a potential switch in energetic substrates due to hypoglycemia. Pathways related to molecular transport and cell signaling in addition to pathways influencing growth and metabolism of the developing pancreas were also impacted. A few genes directly related to gluconeogenesis were also differentially expressed. Our results suggest that fetal hypoglycemia during the first half of gestation impacts fetal pancreas development and function that is not limited to ß cell activity.


Assuntos
Hipoglicemia , Pâncreas , Placenta , Interferência de RNA , Transcriptoma , Gravidez , Animais , Feminino , Placenta/metabolismo , Ovinos , Pâncreas/metabolismo , Pâncreas/embriologia , Hipoglicemia/genética , Hipoglicemia/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Feto/metabolismo , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Perfilação da Expressão Gênica
3.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R523-R533, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642284

RESUMO

Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Feminino , Gravidez , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Feto/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Síndrome Metabólica/metabolismo , Músculo Esquelético/metabolismo , Placenta/metabolismo , Piruvatos/metabolismo , Ovinos
4.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293384

RESUMO

In the ruminant placenta, glucose uptake and transfer are mediated by facilitative glucose transporters SLC2A1 (GLUT1) and SLC2A3 (GLUT3). SLC2A1 is located on the basolateral trophoblast membrane, whereas SLC2A3 is located solely on the maternal-facing, apical trophoblast membrane. While SLC2A3 is less abundant than SLC2A1, SLC2A3 has a five-fold greater affinity and transport capacity. Based on its location, SLC2A3 likely plays a significant role in the uptake of glucose into the trophoblast. Fetal hypoglycemia is a hallmark of fetal growth restriction (FGR), and as such, any deficiency in SLC2A3 could impact trophoblast glucose uptake and transfer to the fetus, thus potentially setting the stage for FGR. By utilizing in vivo placenta-specific lentiviral-mediated RNA interference (RNAi) in sheep, we were able to significantly diminish (p ≤ 0.05) placental SLC2A3 concentration, and determine the impact at mid-gestation (75 dGA). In response to SLC2A3 RNAi (n = 6), the fetuses were hypoglycemic (p ≤ 0.05), exhibited reduced fetal growth, including reduced fetal pancreas weight (p ≤ 0.05), which was associated with reduced umbilical artery insulin and glucagon concentrations, when compared to the non-targeting sequence (NTS) RNAi controls (n = 6). By contrast, fetal liver weights were not impacted, nor were umbilical artery concentrations of IGF1, possibly resulting from a 70% increase (p ≤ 0.05) in umbilical vein chorionic somatomammotropin (CSH) concentrations. Thus, during the first half of gestation, a deficiency in SLC2A3 results in fetal hypoglycemia, reduced fetal development, and altered metabolic hormone concentrations. These results suggest that SLC2A3 may be the rate-limiting placental glucose transporter during the first-half of gestation in sheep.


Assuntos
Hipoglicemia , Insulinas , Humanos , Gravidez , Feminino , Ovinos , Animais , Lactogênio Placentário/metabolismo , Transportador de Glucose Tipo 3/genética , Glucagon/metabolismo , Transportador de Glucose Tipo 1/genética , Placenta/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Peso Fetal , Glucose , Hipoglicemiantes , Insulinas/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R138-R148, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146554

RESUMO

Chorionic somatomammotropin (CSH) is one of the most abundantly produced placental hormones, yet its exact function remains elusive. Near-term [135 days of gestational age (dGA)], CSH RNA interference (RNAi) results in two distinct phenotypes: 1) pregnancies with intrauterine growth restriction (IUGR), and 2) pregnancies with normal fetal and placental weights. Here, we report the physiological changes in CSH RNAi pregnancies without IUGR. The trophectoderm of hatched blastocysts (9 dGA) were infected with lentiviral-constructs expressing either a scrambled control (Control RNAi) or CSH-specific shRNA (CSH RNAi), prior to transfer into synchronized recipient ewes. At 126 dGA, Control RNAi (n = 6) and CSH RNAi (n = 6) pregnancies were fitted with maternal and fetal catheters. Uterine and umbilical blood flows were measured at 132 dGA and nutrient uptakes were calculated by the Fick's principle. Control RNAi and CSH RNAi pregnancies were compared by analysis of variance, and significance was set at P ≤ 0.05. Absolute (mL/min) and relative (mL/min/kg fetus) uterine blood flows were reduced (P ≤ 0.05) in CSH RNAi pregnancies, but umbilical flows were not impacted. The uterine artery-to-vein glucose gradient (mmol/L) was significantly (P ≤ 0.05) increased. The uteroplacental glucose uptake (µmoL/min/kg placenta) was increased (P ≤ 0.05), whereas umbilical glucose uptake (µmoL/min/kg fetus) was reduced. Our results demonstrate that CSH RNAi has significant physiological ramifications, even in the absence of IUGR, and comparing CSH RNAi pregnancies exhibiting both IUGR and non-IUGR phenotypes may help determine the direct effects of CSH and its potential impact on fetal development.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Glucose/metabolismo , Placenta/metabolismo , Lactogênio Placentário/metabolismo , Útero/irrigação sanguínea , Animais , Transporte Biológico , Velocidade do Fluxo Sanguíneo , Feminino , Oxigênio/metabolismo , Lactogênio Placentário/genética , Gravidez , Interferência de RNA , Ovinos
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360913

RESUMO

Deficiency of the placental hormone chorionic somatomammotropin (CSH) can lead to the development of intrauterine growth restriction (IUGR). To gain insight into the physiological consequences of CSH RNA interference (RNAi), the trophectoderm of hatched blastocysts (nine days of gestational age; dGA) was infected with a lentivirus expressing either a scrambled control or CSH-specific shRNA, prior to transfer into synchronized recipient sheep. At 90 dGA, umbilical hemodynamics and fetal measurements were assessed by Doppler ultrasonography. At 120 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies with the 3H2O transplacental diffusion technique at 130 dGA. Nutrient uptake rates were determined and tissues were subsequently harvested at necropsy. CSH RNAi reduced (p ≤ 0.05) both fetal and uterine weights as well as umbilical blood flow (mL/min). This ultimately resulted in reduced (p ≤ 0.01) umbilical IGF1 concentrations, as well as reduced umbilical nutrient uptakes (p ≤ 0.05) in CSH RNAi pregnancies. CSH RNAi also reduced (p ≤ 0.05) uterine nutrient uptakes as well as uteroplacental glucose utilization. These data suggest that CSH is necessary to facilitate adequate blood flow for the uptake of oxygen, oxidative substrates, and hormones essential to support fetal and uterine growth.


Assuntos
Sangue Fetal/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Hemodinâmica/genética , Nutrientes/metabolismo , Lactogênio Placentário/deficiência , Lactogênio Placentário/genética , Interferência de RNA , Ovinos/genética , Transdução de Sinais/genética , Animais , Blastocisto/metabolismo , Feminino , Sangue Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/diagnóstico por imagem , Feto/metabolismo , Idade Gestacional , Glucose/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Placenta/metabolismo , Gravidez , RNA Interferente Pequeno/genética , Ultrassonografia Doppler/métodos , Útero/metabolismo
7.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669156

RESUMO

Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.


Assuntos
Retardo do Crescimento Fetal/metabolismo , MicroRNAs/metabolismo , Doenças Placentárias/metabolismo , Pré-Eclâmpsia/metabolismo , Transcriptoma/genética , Biomarcadores/sangue , Feminino , Retardo do Crescimento Fetal/genética , Ontologia Genética , Humanos , MicroRNAs/genética , Doenças Placentárias/genética , Placentação/genética , Pré-Eclâmpsia/genética , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
8.
FASEB J ; 33(11): 12348-12363, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415216

RESUMO

Abnormal placental development is one of the main etiological factors for intrauterine growth restriction (IUGR). Here, we show that LIN28A and LIN28B are significantly lower and lethal-7 (let-7) microRNAs (miRNAs) significantly higher in term human IUGR vs. normal placentas. We hypothesize that let-7 miRNAs regulate genes with known importance for human placental development [high-mobility group AT-hook 1 (HMGA1), transcriptional regulator Myc-like (c-myc), vascular endothelial growth factor A (VEGF-A), and Wnt family member 1 (WNT1)] by targeting the AT-rich interacting domain (ARID)-3B complex. ACH-3P cells with LIN28A and LIN28B knockout (DKOs) significantly increased let-7 miRNAs, leading to significantly decreased ARID3A, ARID3B, and lysine demethylase 4C (KDM4C). Similarly, Sw.71 cells overexpressing LIN28A and LIN28B (DKIs) significantly decreased let-7 miRNAs, leading to significantly increased ARID3A, ARID3B, and KDM4C. In ACH-3P cells, ARID3A, ARID3B, and KDM4C make a triprotein complex [triprotein complex comprising ARID3A, ARID3B, and KDM4C (ARID3B-complex)] that binds the promoter regions of HMGA1, c-MYC, VEGF-A, and WNT1. ARID3B knockout in ACH-3P cells disrupted the ARID3B-complex, leading to a significant decrease in HMGA1, c-MYC, VEGF-A, and WNT1. DKOs had a significant reduction, whereas DKIs had a significant increase in HMGA1, c-MYC, VEGF-A, and WNT1, potentially due to regulation by the ARID3B-complex. This is the first study showing regulation of let-7 targets in immortalized human trophoblast cells by the ARID3B-complex.-Ali, A., Anthony, R. V., Bouma, G. J., Winger, Q. A. LIN28-let-7 axis regulates genes in immortalized human trophoblast cells by targeting the ARID3B-complex.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica , MicroRNAs/fisiologia , Proteínas de Ligação a RNA/fisiologia , Trofoblastos/metabolismo , Células Cultivadas , Feminino , Retardo do Crescimento Fetal/metabolismo , Proteínas HMGA/genética , Humanos , Gravidez , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Proteína Wnt1/genética
9.
Mol Biol Rep ; 47(9): 7277-7282, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32743776

RESUMO

Sex is an important biological variable as many physiological as well as disease processes differ between females and males. The fundamental biological distinction between females and males starts with chromosomal sex, and the establishment of XX and XY cells and tissues. Polymerase Chain Reaction (PCR) is a simple and effective method to easily determine chromosomal or genetic sex of cells and tissues. The goal of this study was to develop a simple multiplex PCR genotyping assay to distinguish XX and XY tissues in sheep. Primers were designed to amplify a fragment of the autosomal gene myogenin (MYOG) and sex determining region on the Y chromosome (SRY). PCR analysis was performed on a variety of genomic DNA samples isolated from fetal sheep skeletal muscle, brain, liver, and placenta, and revealed a single 259 bp band for MYOG in XX females, and a 259 bp band for MYOG and a 167 bp band for SRY in XY males. Amplicons were clearly distinguishable by gel electrophoresis, and their sequences revealed 100% identity to the known ovine MYOG and SRY sequence. The reported multiplex PCR genotyping assay provides a rapid means to distinguish XX and XY sheep tissues using low volume samples.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Miogenina/genética , Análise para Determinação do Sexo , Proteína da Região Y Determinante do Sexo/genética , Ovinos/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Masculino , Especificidade de Órgãos
10.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455665

RESUMO

Placental disorders are a major cause of pregnancy loss in humans, and 40-60% of embryos are lost between fertilization and birth. Successful embryo implantation and placental development requires rapid proliferation, invasion, and migration of trophoblast cells. In recent years, microRNAs (miRNAs) have emerged as key regulators of molecular pathways involved in trophoblast function. A miRNA binds its target mRNA in the 3'-untranslated region (3'-UTR), causing its degradation or translational repression. Lethal-7 (let-7) miRNAs induce cell differentiation and reduce cell proliferation by targeting proliferation-associated genes. The oncoprotein LIN28 represses the biogenesis of mature let-7 miRNAs. Proliferating cells have high LIN28 and low let-7 miRNAs, whereas differentiating cells have low LIN28 and high let-7 miRNAs. In placenta, low LIN28 and high let-7 miRNAs can lead to reduced proliferation of trophoblast cells, resulting in abnormal placental development. In trophoblast cells, let-7 miRNAs reduce the expression of proliferation factors either directly by binding their mRNA in 3'-UTR or indirectly by targeting the AT-rich interaction domain (ARID)3B complex, a transcription-activating complex comprised of ARID3A, ARID3B, and histone demethylase 4C (KDM4C). In this review, we discuss regulation of trophoblast function by miRNAs, focusing on the role of LIN28-let-7-ARID3B pathway in placental development.


Assuntos
Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Placenta/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , MicroRNAs/metabolismo , Placenta/embriologia , Gravidez , Proteínas de Ligação a RNA/metabolismo
11.
Int J Mol Sci ; 21(7)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268593

RESUMO

LIN28 inhibits let-7 miRNA maturation which prevents cell differentiation and promotes proliferation. We hypothesized that the LIN28-let-7 axis regulates proliferation-associated genes in sheep trophectoderm in vivo. Day 9-hatched sheep blastocysts were incubated with lentiviral particles to deliver shRNA targeting LIN28 specifically to trophectoderm cells. At day 16, conceptus elongation was significantly reduced in LIN28A and LIN28B knockdowns. Let-7 miRNAs were significantly increased and IGF2BP1-3, HMGA1, ARID3B, and c-MYC were decreased in trophectoderm from knockdown conceptuses. Ovine trophoblast (OTR) cells derived from day 16 trophectoderm are a useful tool for in vitro experiments. Surprisingly, LIN28 was significantly reduced and let-7 miRNAs increased after only a few passages of OTR cells, suggesting these passaged cells represent a more differentiated phenotype. To create an OTR cell line more similar to day 16 trophectoderm we overexpressed LIN28A and LIN28B, which significantly decreased let-7 miRNAs and increased IGF2BP1-3, HMGA1, ARID3B, and c-MYC compared to control. This is the first study showing the role of the LIN28-let-7 axis in trophoblast proliferation and conceptus elongation in vivo. These results suggest that reduced LIN28 during early placental development can lead to reduced trophoblast proliferation and sheep conceptus elongation at a critical period for successful establishment of pregnancy.


Assuntos
Ectoderma/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Ligação a RNA/genética , Trofoblastos/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Feminino , Placenta , Gravidez , Proteínas de Ligação a RNA/metabolismo , Ovinos
12.
Mol Reprod Dev ; 86(11): 1663-1670, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31410930

RESUMO

During early placental development, tumor suppressors and oncogenes work synergistically to regulate cell proliferation and differentiation in a restrained manner compared with the uncontrollable growth in cancer. One example of this partnership is the regulation of the oncofetal protein HMGA2 by BRCA1. BRCA1 forms a repressor complex with ZNF350 and CtIP to bind to the promoter of HMGA2, preventing transcription. Chromatin immunoprecipitation determined BRCA1 forms this repressor complex in human trophoblast cells, suggesting a role in the placenta. Furthermore, miR-182 has been shown to target BRCA1 mRNA in ovarian cancer cells, blocking the formation of the BRCA1 repressor complex and allowing increased transcription of HMGA2. miR-182 was one of the first miRNAs described as elevated in the serum and placentas of preeclamptic women. Therefore, we hypothesized that BRCA1 is essential for normal trophoblast cell development. We used CRISPR-Cas9 genome editing and miR-182 overexpression to decrease BRCA1 protein in the Swan71 cell line. HMGA2 was significantly increased in the BRCA1 KO and miR-182 overexpressing cells compared to controls. We also determined that BRCA1 repressor complex binding to HMGA2 was significantly reduced in BRCA1 KO and miR-182 overexpressing cells compared with controls, leading us to conclude that increased HMGA2 was because of decreased binding of the BRCA1 repressor complex. Finally, we found that the caspase activity was significantly higher in BRCA1 KO and miR-182 overexpressing cells suggesting an increased amount of apoptosis. These data suggest that BRCA1 is an important regulator of the oncofetal protein HMGA2 and promotes cell survival in human placental cells.


Assuntos
Proteína BRCA1/metabolismo , Proteína HMGA1a/metabolismo , Trofoblastos/metabolismo , Proteína BRCA1/genética , Linhagem Celular , Sobrevivência Celular , Técnicas de Inativação de Genes , Proteína HMGA1a/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Trofoblastos/citologia
13.
Mol Reprod Dev ; 86(9): 1086-1093, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31215730

RESUMO

LIN28B is an RNA-binding protein necessary for maintaining pluripotency in stem cells and plays an important role in trophoblast cell differentiation. LIN28B action on target gene function often involves the Let-7 miRNA family. Previous work in cancer cells revealed that LIN28 through Let-7 miRNA regulates expression of androgen receptor (AR). Considering the similarities between cancer and trophoblast cells, we hypothesize that LIN28B also is necessary for the presence of AR in human trophoblast cells. The human first-trimester trophoblast cell line, ACH-3P was used to evaluate the regulation of AR by LIN28B, and a LIN28B knockdown cell line was constructed using lentiviral-based vectors. LIN28B knockdown in ACH-3P cells resulted in significantly decreased levels of AR and increased levels of Let-7 miRNAs. Moreover, treatment of ACH-3P cells with Let-7c mimic, but not Let-7e or Let-7f, resulted in a significant reduction in LIN28B and AR. Finally, forskolin-induced syncytialization and Let-7c treatment both resulted in increased expression of syncytiotrophoblast marker ERVW-1 and a significant decrease in AR in ACH-3P. These data reveal that LIN28B regulates AR levels in trophoblast cells likely through its inhibitory actions on let-7c, which may be necessary for trophoblast cell differentiation into the syncytiotrophoblast.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Androgênicos/biossíntese , Trofoblastos/metabolismo , Linhagem Celular , Humanos , Trofoblastos/citologia
14.
Reprod Biol Endocrinol ; 16(1): 101, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340501

RESUMO

Early human placental development strongly resembles carcinogenesis in otherwise healthy tissues. The progenitor cells of the placenta, the cytotrophoblast, rapidly proliferate to produce a sufficient number of cells to form an organ that will contribute to fetal development as early as the first trimester. The cytotrophoblast cells begin to differentiate, some towards the fused cells of the syncytiotrophoblast and some towards the highly invasive and migratory extravillous trophoblast. Invasion and migration of extravillous trophoblast cells mimics tumor metastasis. One key difference between cancer progression and placental development is the tight regulation of these oncogenes and oncogenic processes. Often, tumor suppressors and oncogenes work synergistically to regulate cell proliferation, differentiation, and invasion in a restrained manner compared to the uncontrollable growth in cancer. This review will compare and contrast the mechanisms that drive both cancer progression and placental development. Specifically, this review will focus on the molecular mechanisms that promote cell proliferation, evasion of apoptosis, cell invasion, and angiogenesis.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas Oncogênicas/metabolismo , Placenta/metabolismo , Placentação , Movimento Celular , Proliferação de Células , Feminino , Humanos , Placenta/citologia , Gravidez , Trofoblastos/citologia , Trofoblastos/metabolismo
15.
Am J Physiol Regul Integr Comp Physiol ; 310(9): R837-46, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26887431

RESUMO

Intrauterine growth restriction (IUGR) is a leading cause of neonatal mortality and morbidity. Chorionic somatomammotropin hormone (CSH), a placenta-specific secretory product found at high concentrations in maternal and fetal circulation throughout gestation, is significantly reduced in human and sheep IUGR pregnancies. The objective of this study was to knock down ovine CSH (oCSH) expression in vivo using lentiviral-mediated short-hairpin RNA to test the hypothesis that oCSH deficiency would result in IUGR of near-term fetal lambs. Three different lentiviral oCSH-targeting constructs were used and compared with pregnancies (n = 8) generated with a scrambled control (SC) lentiviral construct. Pregnancies were harvested at 135 days of gestation. The most effective targeting sequence, "target 6" (tg6; n = 8), yielded pregnancies with significant reductions (P ≤ 0.05) in oCSH mRNA (50%) and protein (38%) concentrations, as well as significant reductions (P ≤ 0.05) in placental (52%) and fetal (32%) weights compared with the SC pregnancies. Fetal liver weights were reduced 41% (P ≤ 0.05), yet fetal liver insulin-like growth factor-I (oIGF1) and -II mRNA concentrations were reduced (P ≤ 0.05) 82 and 71%, respectively, and umbilical artery oIGF1 concentrations were reduced 62% (P ≤ 0.05) in tg6 pregnancies. Additionally, fetal liver oIGF-binding protein (oIGFBP) 2 and oIGFBP3 mRNA concentrations were reduced (P ≤ 0.05), whereas fetal liver oIGFBP1 mRNA concentration was not impacted nor was maternal liver oIGF and oIGFBP mRNA concentrations or uterine artery oIGF1 concentrations (P ≥ 0.10). Based on our results, it appears that oCSH deficiency does result in IUGR, by impacting placental development as well as fetal liver development and function.


Assuntos
Retardo do Crescimento Fetal/veterinária , Lactogênio Placentário/deficiência , Prenhez , Ovinos/fisiologia , Animais , Blastocisto/fisiologia , Feminino , Desenvolvimento Fetal , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Silenciamento de Genes , Inativação Gênica , Lentivirus , Placenta/fisiologia , Gravidez , Prenhez/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Somatomedinas/genética , Somatomedinas/metabolismo
16.
Reprod Fertil Dev ; 27(6): 897-905, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25945781

RESUMO

Age-related decline in fertility is a consequence of low oocyte number and/or low oocyte competence resulting in pregnancy failure. Transforming growth factor (TGF)-ß signalling is a well-studied pathway involved in follicular development and ovulation. Recently, small non-coding RNAs, namely microRNAs (miRNAs), have been demonstrated to regulate several members of this pathway; miRNAs are secreted inside small cell-secreted vesicles called exosomes. The overall goal of the present study was to determine whether altered exosome miRNA content in follicular fluid from old mares is associated with changes in TGF-ß signalling in granulosa cells during follicle development. Follicular fluid was collected at deviation (n=6), mid-oestrus (n=6) and preovulation (n=6) for identification of exosomal miRNAs from young (3-12 years) and old (20-26 years) mares. Analysis of selected TGF-ß signalling members revealed significantly increased levels of interleukin 6 (IL6) in granulosa cells from mid-oestrus compared with preovulatory follicles, and collagen alpha-2(I) chain (COL1A2) in granulosa cells from deviation compared with preovulatory follicles in young mares. In addition, granulosa cells from old mares had significantly altered levels of DNA-binding protein inhibitor ID-2 (ID2), signal transducer and activator of transcription 1 (STAT1) and cell division cycle 25A (CDC25A). Finally, changes in exosomal miRNA predicted to target selected TGF-ß members were identified.


Assuntos
Líquido Folicular/metabolismo , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Fatores Etários , Animais , Ciclo Estral/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo , Feminino , Cavalos , Proteína 2 Inibidora de Diferenciação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oócitos/metabolismo , Fator de Transcrição STAT1/metabolismo
17.
Mol Reprod Dev ; 81(11): 983-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25269776

RESUMO

Despite reports that circulating levels of maternal serum exosomes increase during pregnancy and that placenta-specific microRNAs (miRNAs) have been identified in humans, little is known about exosomes and miRNAs during pregnancy in agriculture animals. In this study, we characterized the expression of 94 miRNAs in ovine placentomes at gestation day (GD) 90 by real-time PCR, and then investigated the presence of these miRNAs in exosome samples isolated from maternal jugular blood in non-pregnant ewes and at GD30 and GD90 and in umbilical blood collected at GD90. In maternal jugular exosome samples, 13 miRNAs were present in lower and 12 miRNAs were present in higher amounts at GD90 compared to non-pregnant (GD0) or GD30. Additionally, 12 miRNAs were present in higher amounts in umbilical venous exosomes compared to umbilical arterial exosomes; only miR-132 was lower in exosomes isolated from umbilical venous blood than from umbilical arterial blood. In placentome samples, miR-34c and miR135a abundance was higher in cotyledon tissue than in caruncle, while miR-183 and miR-379 amounts were higher in caruncle than cotyledon tissue. Only miR-379 was differentially expressed in all serum exosomes and placentome samples. Pathway analysis predicted that differentially expressed maternal serum exosomal miRNAs target Cellular Growth and Proliferation and Organ Development pathways, while umbilical serum exosomal and placentomes miRNAs were predicted to target cellular development and organismal/embryonic development.


Assuntos
Exossomos/metabolismo , Sangue Fetal/metabolismo , MicroRNAs/genética , Placenta/metabolismo , Ovinos/genética , Animais , Exossomos/genética , Feminino , Idade Gestacional , MicroRNAs/sangue , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Ovinos/sangue
18.
Reprod Biol Endocrinol ; 12: 44, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24884710

RESUMO

BACKGROUND: Ovarian follicle growth and maturation requires extensive communication between follicular somatic cells and oocytes. Recently, intercellular cell communication was described involving cell-secreted vesicles called exosomes (50-150 nm), which contain miRNAs and protein, and have been identified in ovarian follicular fluid. The goal of this study was to identify a possible role of exosomes in follicle maturation. METHODS: Follicle contents were collected from mares at mid-estrous (~35 mm, before induction of follicular maturation) and pre-ovulatory follicles (30-34 h after induction of follicular maturation). A real time PCR screen was conducted to reveal significant differences in the presence of exosomal miRNAs isolated from mid-estrous and pre-ovulatory follicles, and according to bioinformatics analysis these exosomal miRNAs are predicted to target members belonging to the TGFB superfamily, including ACVR1 and ID2. Granulosa cells from pre-ovulatory follicles were cultured and treated with exosomes isolated from follicular fluid. Changes in mRNA and protein were measured by real time PCR and Western blot. RESULTS: ACVR1 mRNA and protein was detected in granulosa cells at mid-estrous and pre-ovulatory stages, and real time PCR analysis revealed significantly lower levels of ID2 (an ACVR1 target gene) in granulosa cells from pre-ovulatory follicles. Exposure to exosomes from follicular fluid of mid-estrous follicles decreased ID2 levels in granulosa cells. Moreover, exosomes isolated from mid-estrous and pre-ovulatory follicles contain ACVR1 and miR-27b, miR-372, and miR-382 (predicted regulators of ACVR1 and ID2) were capable of altering ID2 levels in pre-ovulatory granulosa cells. CONCLUSIONS: These data indicate that exosomes isolated from follicular fluid can regulate members of the TGFB/BMP signaling pathway in granulosa cells, and possibly play a role in regulating follicle maturation.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Exossomos/metabolismo , Cavalos/fisiologia , Proteína 2 Inibidora de Diferenciação/antagonistas & inibidores , MicroRNAs/metabolismo , Oogênese , Folículo Ovariano/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Células Cultivadas , Colorado , Biologia Computacional/métodos , Ciclo Estral/metabolismo , Exocitose , Feminino , Líquido Folicular/citologia , Líquido Folicular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Folículo Ovariano/citologia , RNA Mensageiro/metabolismo , Transdução de Sinais
19.
Biol Reprod ; 89(4): 95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24006280

RESUMO

Proper regulation of trophoblast proliferation, differentiation, and function are critical for placenta development and function. The RNA-binding protein, LIN28A, has been well characterized as a potent regulator of differentiation in embryonic stem cells; however, little is known about the function of LIN28A in the placenta. We assessed LIN28A in vitro using mouse trophoblast stem (mTS) cells and human trophoblast cells (ACH-3P). We observed that LIN28A decreased and let-7 miRNA increased when mTS cells were induced to differentiate into mouse trophoblast giant cells (mTGCs) upon the removal of FGF4, heparin and conditioned medium. Similarly, we observed that LIN28A decreased in ACH-3P cells induced to syncytialize with forskolin treatment. To assess LIN28A in vivo we examined Embryonic Day 11.5 mouse placenta and observed abundant LIN28A in the chorioallantoic interface and labyrinth layer, with little LIN28A staining in spongiotrophoblast or differentiated mTGCs. Additionally, shRNA-mediated LIN28A knockdown in ACH-3P cells resulted in increased spontaneous syncytialization, and increased levels of syncytiotrophoblast markers hCG, LGALS13, and ERVW-1 mRNA. Additionally, targeted degradation of LIN28A mRNA increased responsiveness to forskolin-induced differentiation. In contrast, targeted degradation of Lin28a mRNA in mTS cells did not alter cell phenotype when maintained under proliferative culture conditions. Together, these data establish that LIN28A has a functional role in regulating trophoblast differentiation and function, and that loss of LIN28A in human trophoblast is sufficient to induce differentiation, but does not induce differentiation in the mouse.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Proteínas de Ligação a RNA/metabolismo , Trofoblastos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Camundongos , MicroRNAs/metabolismo , Placenta/citologia , Placenta/embriologia , Placenta/metabolismo , Placentação , Gravidez , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Especificidade da Espécie , Trofoblastos/citologia
20.
Life (Basel) ; 13(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374044

RESUMO

While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function. Previously, we demonstrated that in vivo RNA interference (RNAi) of the placental hormone, chorionic somatomammotropin (CSH), resulted in two phenotypes. One phenotype exhibits significant placental and fetal growth restriction (PI-FGR), impaired placental nutrient transport, and significant reductions in umbilical insulin and IGF1. The other phenotype does not exhibit statistically significant changes in placental or fetal growth (non-FGR). It was our objective to further characterize these two phenotypes by determining the impact of CSH RNAi on the placental (maternal caruncle and fetal cotyledon) expression of the IGF axis. The trophectoderm of hatched blastocysts (9 days of gestation, dGA) were infected with a lentivirus expressing either a non-targeting sequence (NTS RNAi) control or CSH-specific shRNA (CSH RNAi) prior to embryo transfer into synchronized recipient ewes. At ≈125 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies. Nutrient uptakes were determined, and tissues were harvested at necropsy. In both CSH RNAi non-FGR and PI-FGR pregnancies, uterine blood flow was significantly reduced (p ≤ 0.05), while umbilical blood flow (p ≤ 0.01), both uterine and umbilical glucose and oxygen uptakes (p ≤ 0.05), and umbilical concentrations of insulin and IGF1 (p ≤ 0.05) were reduced in CSH RNAi PI-FGR pregnancies. Fetal cotyledon IGF1 mRNA concentration was reduced (p ≤ 0.05) in CSH RNAi PI-FGR pregnancies, whereas neither IGF1 nor IGF2 mRNA concentrations were impacted in the maternal caruncles, and either placental tissue in the non-FGR pregnancies. Fetal cotyledon IGF1R and IGF2R mRNA concentrations were not impacted for either phenotype, yet IGF2R was increased (p ≤ 0.01) in the maternal caruncles of CSH RNAi PI-FGR pregnancies. For the IGF binding proteins (IGFBP1, IGFBP2, IGFBP3), only IGFBP2 mRNA concentrations were impacted, with elevated IGFBP2 mRNA in both the fetal cotyledon (p ≤ 0.01) and maternal caruncle (p = 0.08) of CSH RNAi non-FGR pregnancies. These data support the importance of IGF1 in placental growth and function but may also implicate IGFBP2 in salvaging placental growth in non-FGR pregnancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA