Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 19(1): 193, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35897073

RESUMO

BACKGROUND: Herbicides are environmental contaminants that have gained much attention due to the potential hazards they pose to human health. Glyphosate, the active ingredient in many commercial herbicides, is the most heavily applied herbicide worldwide. The recent rise in glyphosate application to corn and soy crops correlates positively with increased death rates due to Alzheimer's disease and other neurodegenerative disorders. Glyphosate has been shown to cross the blood-brain barrier in in vitro models, but has yet to be verified in vivo. Additionally, reports have shown that glyphosate exposure increases pro-inflammatory cytokines in blood plasma, particularly TNFα. METHODS: Here, we examined whether glyphosate infiltrates the brain and elevates TNFα levels in 4-month-old C57BL/6J mice. Mice received either 125, 250, or 500 mg/kg/day of glyphosate, or a vehicle via oral gavage for 14 days. Urine, plasma, and brain samples were collected on the final day of dosing for analysis via UPLC-MS and ELISAs. Primary cortical neurons were derived from amyloidogenic APP/PS1 pups to evaluate in vitro changes in Aß40-42 burden and cytotoxicity. RNA sequencing was performed on C57BL/6J brain samples to determine changes in the transcriptome. RESULTS: Our analysis revealed that glyphosate infiltrated the brain in a dose-dependent manner and upregulated TNFα in both plasma and brain tissue post-exposure. Notably, glyphosate measures correlated positively with TNFα levels. Glyphosate exposure in APP/PS1 primary cortical neurons increases levels of soluble Aß40-42 and cytotoxicity. RNAseq revealed over 200 differentially expressed genes in a dose-dependent manner and cell-type-specific deconvolution analysis showed enrichment of key biological processes in oligodendrocytes including myelination, axon ensheathment, glial cell development, and oligodendrocyte development. CONCLUSIONS: Collectively, these results show for the first time that glyphosate infiltrates the brain, elevates both the expression of TNFα and soluble Aß, and disrupts the transcriptome in a dose-dependent manner, suggesting that exposure to this herbicide may have detrimental outcomes regarding the health of the general population.


Assuntos
Doença de Alzheimer , Glicina , Herbicidas , Fator de Necrose Tumoral alfa , Animais , Encéfalo , Cromatografia Líquida , Citocinas/genética , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Glifosato
2.
Acta Neuropathol ; 142(2): 279-294, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33978814

RESUMO

Evidence indicates that tau hyper-phosphorylation and subsequent neurofibrillary tangle formation contribute to the extensive neuronal death in Alzheimer's disease (AD) and related tauopathies. Recent work has identified that increased tau acetylation can promote tau phosphorylation. Tau acetylation occurs at lysine 280 resulting from increased expression of the lysine acetyltransferase p300. The exact upstream mechanisms mediating p300 expression remain elusive. Additional work highlights the role of the epigenome in tau pathogenesis, suggesting that dysregulation of epigenetic proteins may contribute to acetylation and hyper-phosphorylation of tau. Here, we identify and focus on the histone-binding subunit of the Nucleosome Remodeling and Deacetylase (NuRD) complex: Retinoblastoma-Binding Protein 7 (Rbbp7). Rbbp7 chaperones chromatin remodeling proteins to their nuclear histone substrates, including histone acetylases and deacetylases. Notably, Rbbp7 binds to p300, suggesting that it may play a role in modulating tau acetylation. We interrogated Rbbp7 in post-mortem brain tissue, cell lines and mouse models of AD. We found reduced Rbbp7 mRNA expression in AD cases, a significant negative correlation with CERAD (neuritic plaque density) and Braak Staging (pathogenic tau inclusions) and a significant positive correlation with post-mortem brain weight. We also found a neuron-specific downregulation of Rbbp7 mRNA in AD patients. Rbbp7 protein levels were significantly decreased in 3xTg-AD and PS19 mice compared to NonTg, but no decreases were found in APP/PS1 mice that lack tau pathology. In vitro, Rbbp7 overexpression rescued TauP301L-induced cytotoxicity in immortalized hippocampal cells and primary cortical neurons. In vivo, hippocampal Rbbp7 overexpression rescued neuronal death in the CA1 of PS19 mice. Mechanistically, we found that increased Rbbp7 reduced p300 levels, tau acetylation at lysine 280 and tau phosphorylation at AT8 and AT100 sites. Collectively, these data identify a novel role of Rbbp7, protecting against tau-related pathologies, and highlight its potential as a therapeutic target in AD and related tauopathies.


Assuntos
Acetilação , Neurônios/patologia , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteína 7 de Ligação ao Retinoblastoma/genética
4.
Cannabis Cannabinoid Res ; 8(4): 612-622, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35639364

RESUMO

Introduction: Adolescence is an important phase in brain maturation, specifically it is a time during which weak synapses are pruned and neural pathways are strengthened. Adolescence is also a time of experimentation with drugs, including cannabis, which may have detrimental effects on the developing nervous system. The cannabinoid type 1 receptor (CB1) is an important modulator of neurotransmitter release and plays a central role in neural development. Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), are also critical during development for axon guidance and synapse specification. Objective: The objective of this study was to examine the effects of the phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), on the expression of BDNF, its receptor TrkB, and other synaptic markers in the adolescent mouse hippocampus. Materials and Methods: Mice of both sexes were injected daily from P28 to P49 with 3 mg/kg THC, CBD, or a combination of THC/CBD. Brains were harvested on P50, and the dorsal and ventral hippocampi were analyzed for levels of BDNF, TrkB, and several synaptic markers using quantitative polymerase chain reaction, western blotting, and image analyses. Results: THC treatment statistically significantly reduced transcript levels of BDNF in adolescent female (BDNF I) and male (BDNF I, II, IV, VI, and IX) hippocampi. These changes were prevented when CBD was co-administered with THC. CBD by itself statistically significantly increased expression of some transcripts (BDNF II, VI, and IX for females, BDNF VI for males). No statistically significant changes were observed in protein expression for BDNF, TrkB, phospho-TrkB, phospho-CREB (cAMP response element-binding protein), and the synaptic markers, vesicular GABA transporter, vesicular glutamate transporter, synaptobrevin, and postsynaptic density protein 95. However, CB1 receptors were statistically significantly reduced in the ventral hippocampus with THC treatment. Conclusions: This study found changes in BDNF mRNA expression within the hippocampus of adolescent mice exposed to THC and CBD. THC represses transcript expression for some BDNF variants, and this effect is rescued when CBD is co-administered. These effects were seen in both males and females, but sex differences were observed in specific BDNF isoforms. While a statistically significant reduction in CB1 receptor protein in the ventral dentate gyrus was seen, no other changes in protein levels were observed.


Assuntos
Canabidiol , Feminino , Masculino , Camundongos , Animais , Canabidiol/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Dronabinol/farmacologia , Tropomiosina/metabolismo , Tropomiosina/farmacologia , Hipocampo
5.
Aging Cell ; 22(2): e13775, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642814

RESUMO

There is an urgent need to identify modifiable environmental risk factors that reduce the incidence of Alzheimer's disease (AD). The B-like vitamin choline plays key roles in body- and brain-related functions. Choline produced endogenously by the phosphatidylethanolamine N-methyltransferase protein in the liver is not sufficient for adequate physiological functions, necessitating daily dietary intake. ~90% of Americans do not reach the recommended daily intake of dietary choline. Thus, it's imperative to determine whether dietary choline deficiency increases disease outcomes. Here, we placed 3xTg-AD, a model of AD, and non-transgenic (NonTg) control mice on either a standard laboratory diet with sufficient choline (ChN; 2.0 g/kg choline bitartrate) or a choline-deficient diet (Ch-; 0.0 g/kg choline bitartrate) from 3 to 12 (early to late adulthood) months of age. A Ch- diet reduced blood plasma choline levels, increased weight, and impaired both motor function and glucose metabolism in NonTg mice, with 3xTg-AD mice showing greater deficits. Tissue analyses showed cardiac and liver pathology, elevated soluble and insoluble Amyloid-ß and Thioflavin S structures, and tau hyperphosphorylation at various pathological epitopes in the hippocampus and cortex of 3xTg-AD Ch- mice. To gain mechanistic insight, we performed unbiased proteomics of hippocampal and blood plasma samples. Dietary choline deficiency altered hippocampal networks associated with microtubule function and postsynaptic membrane regulation. In plasma, dietary choline deficiency altered protein networks associated with insulin metabolism, mitochondrial function, inflammation, and fructose metabolic processing. Our data highlight that dietary choline intake is necessary to prevent systems-wide organ pathology and reduce hallmark AD pathologies.


Assuntos
Doença de Alzheimer , Deficiência de Colina , Camundongos , Animais , Doença de Alzheimer/metabolismo , Colina , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Ingestão de Alimentos , Modelos Animais de Doenças , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide
6.
Cannabis Cannabinoid Res ; 2(1): 235-246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098186

RESUMO

Introduction: The high prevalence of adolescent cannabis use, the association between this use and later psychiatric disease, and increased access to high-potency cannabis highlight the need for a better understanding of the long-term effects of adolescent cannabis use on cognitive and behavioral outcomes. Furthermore, increasing Δ9-tetrahydrocannabinol (THC) in high-potency cannabis is accompanied by a decrease in cannabidiol (CBD), thus an understanding of the interactions between CBD and THC in the neurodevelopmental effects of THC is also important. The current study examined the immediate and long-term behavioral consequences of THC, CBD, and their combination in a mouse model of adolescent cannabis use. Materials and Methods: Male CD1 mice received daily injections of THC (3 mg/kg), CBD (3 mg/kg), CBD+THC (3 mg/kg each), vehicle, or remained undisturbed in their home cage (no handling/injections), either during adolescence (postnatal day [PND] 28-48) or during early adulthood (PND 69-89). Animals were then evaluated with a battery of behavioral tests 1 day after drug treatment, and again after 42 drug-free days. The tests included the following: open field (day 1), novel object recognition (NOR; day 2), marble burying (day 3), elevated plus maze (EPM; day 4), and Nestlet shredding (day 5). Results: Chronic administration of THC during adolescence led to immediate and long-term impairments in object recognition/working memory, as measured by the NOR task. In contrast, adult administration of THC caused immediate, but not long term, impairment of object/working memory. Adolescent chronic exposure to THC increased repetitive and compulsive-like behaviors, as measured by the Nestlet shredding task. Chronic administration of THC, either during adolescence or during adulthood, led to a delayed increase in anxiety as measured by the EPM. All THC-induced behavioral abnormalities were prevented by the coadministration of CBD+THC, whereas CBD alone did not influence behavioral outcomes. Conclusion: These data suggest that chronic exposure to THC during adolescence leads to some of the behavioral abnormalities common in schizophrenia. Interestingly, CBD appeared to antagonize all THC-induced behavioral abnormalities. These findings support the hypothesis that adolescent THC use can impart long-term behavioral deficits; however, cotreatment with CBD prevents these deficits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA