RESUMO
Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.
Assuntos
Anticorpos , Bacteriófagos , Humanos , Antígenos , Epitopos/genética , PeptídeosRESUMO
As part of the Human Functional Genomics Project, which aims to understand the factors that determine the variability of immune responses, we investigated genetic variants affecting cytokine production in response to ex vivo stimulation in two independent cohorts of 500 and 200 healthy individuals. We demonstrate a strong impact of genetic heritability on cytokine production capacity after challenge with bacterial, fungal, viral, and non-microbial stimuli. In addition to 17 novel genome-wide significant cytokine QTLs (cQTLs), our study provides a comprehensive picture of the genetic variants that influence six different cytokines in whole blood, blood mononuclear cells, and macrophages. Important biological pathways that contain cytokine QTLs map to pattern recognition receptors (TLR1-6-10 cluster), cytokine and complement inhibitors, and the kallikrein system. The cytokine QTLs show enrichment for monocyte-specific enhancers, are more often located in regions under positive selection, and are significantly enriched among SNPs associated with infections and immune-mediated diseases. PAPERCLIP.
Assuntos
Citocinas/genética , Citocinas/imunologia , Infecções/imunologia , Adolescente , Adulto , Idoso , Sangue/imunologia , Feminino , Estudo de Associação Genômica Ampla , Projeto Genoma Humano , Humanos , Infecções/microbiologia , Infecções/virologia , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
The immune response to pathogens varies substantially among people. Whereas both genetic and nongenetic factors contribute to interperson variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy volunteers, including baseline immunological parameters and molecular profiles (genome, metabolome and gut microbiome), with cytokine production after stimulation with 20 pathogens, we identified distinct patterns of co-regulation. Among the 91 different cytokine-stimulus pairs, 11 categories of host factors together explained up to 67% of interindividual variation in cytokine production induced by stimulation. A computational model based on genetic data predicted the genetic component of stimulus-induced cytokine production (correlation 0.28-0.89), and nongenetic factors influenced cytokine production as well.
Assuntos
Citocinas/biossíntese , Adolescente , Adulto , Idoso , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Citocinas/genética , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Masculino , Metabolômica , Metagenômica , Pessoa de Meia-Idade , Fenótipo , Biologia de Sistemas , Adulto JovemRESUMO
Genome-wide association studies (GWAS) have now correlated hundreds of genetic variants with complex genetic diseases and drug efficacy. Functional characterization of these factors remains challenging, particularly because of the lack of human model systems. Molecular and nanotechnological advances, in particular the ability to generate patient-specific PSC lines, differentiate them into diverse cell types, and seed and combine them on microfluidic chips, have led to the establishment of organ-on-a-chip (OoC) platforms that recapitulate organ biology. OoC technology thus provides unique personalized platforms for studying the effects of host genetics and environmental factors on organ physiology. In this review we describe the technology and provide examples of how OoCs may be used for disease modeling and pharmacogenetic research.
Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Sistemas Microfisiológicos , Farmacogenética , Estudo de Associação Genômica Ampla , Genética HumanaRESUMO
Celiac disease (CeD) is triggered by gluten and results in inflammation and villous atrophy of the small intestine. We aimed to explore the role of miRNA-mediated deregulation of the transcriptome in CeD. Duodenal biopsies of CeD patients (n = 33) and control subjects (n = 10) were available for miRNA-sequencing, with RNA-sequencing also available for controls (n = 5) and CeD (n = 6). Differential expression analysis was performed to select CeD-associated miRNAs and genes. MiRNAâtarget transcript pairs selected from public databases that also displayed a strong negative expression correlation in the current dataset (R < -0.7) were used to construct a CeD miRNAâtarget transcript interaction network. The network includes 2030 miRNAâtarget transcript interactions, including 423 experimentally validated pairs. Pathway analysis found that interactions are involved in immune-related pathways (e.g., interferon signaling) and metabolic pathways (e.g., lipid metabolism). The network includes 13 genes previously prioritized to be causally deregulated by CeD-associated genomic variants, including STAT1. CeD-associated miRNAs might play a role in promoting inflammation and decreasing lipid metabolism in the small intestine, thereby contributing unbalanced cell turnover in the intestinal crypt. Some CeD-associated miRNAs deregulate genes that are also affected by genomic CeD-risk variants, adding an additional layer of complexity to the deregulated transcriptome in CeD.
Assuntos
Doença Celíaca/metabolismo , Duodeno/metabolismo , Inflamação , Metabolismo dos Lipídeos , MicroRNAs/genética , Transcriptoma , Autoimunidade , Doença Celíaca/genética , Feminino , Humanos , Interferons/metabolismo , Masculino , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de SinaisRESUMO
BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). RESULTS: The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96-100%) and chromatin mark QTL (≥87-92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. CONCLUSIONS: Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application (https://github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web tool (www.molgenis.org/deconvolution).
Assuntos
Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas/imunologia , Contagem Corporal Total/métodos , HumanosRESUMO
The respective effects of tissue alarmins interleukin (IL)-15 and interferon beta (IFNß), and IL-21 produced by T cells on the reprogramming of cytotoxic T lymphocytes (CTLs) that cause tissue destruction in celiac disease is poorly understood. Transcriptomic and epigenetic profiling of primary intestinal CTLs showed massive and distinct temporal transcriptional changes in response to tissue alarmins, while the impact of IL-21 was limited. Only anti-viral pathways were induced in response to all the three stimuli, albeit with differences in dynamics and strength. Moreover, changes in gene expression were primarily independent of changes in H3K27ac, suggesting that other regulatory mechanisms drive the robust transcriptional response. Finally, we found that IL-15/IFNß/IL-21 transcriptional signatures could be linked to transcriptional alterations in risk loci for complex immune diseases. Together these results provide new insights into molecular mechanisms that fuel the activation of CTLs under conditions that emulate the inflammatory environment in patients with autoimmune diseases.
Assuntos
Alarminas/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Autoimunidade , Doença Celíaca/etiologia , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Perfilação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interleucina-15/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Regiões Promotoras GenéticasRESUMO
Celiac disease (CeD) is a complex immune-mediated disorder that is triggered by dietary gluten in genetically predisposed individuals. CeD is characterized by inflammation and villous atrophy of the small intestine, which can lead to gastrointestinal complaints, malnutrition, and malignancies. Currently, diagnosis of CeD relies on serology (antibodies against transglutaminase and endomysium) and small-intestinal biopsies. Since small-intestinal biopsies require invasive upper-endoscopy, and serology cannot predict CeD in an early stage or be used for monitoring disease after initiation of a gluten-free diet, the search for non-invasive biomarkers is ongoing. Here, we summarize current and up-and-coming non-invasive biomarkers that may be able to predict, diagnose, and monitor the progression of CeD. We further discuss how current and emerging techniques, such as (single-cell) transcriptomics and genomics, can be used to uncover the pathophysiology of CeD and identify non-invasive biomarkers.
Assuntos
Biomarcadores , Doença Celíaca/diagnóstico , Doença Celíaca/imunologia , Animais , Biópsia , Progressão da Doença , Endoscopia , Seguimentos , Gastroenterologia/tendências , Humanos , Sistema Imunitário , TranscriptomaRESUMO
BACKGROUND: Candidemia, one of the most common causes of fungal bloodstream infection, leads to mortality rates up to 40% in affected patients. Understanding genetic mechanisms for differential susceptibility to candidemia may aid in designing host-directed therapies. METHODS: We performed the first genome-wide association study on candidemia, and we integrated these data with variants that affect cytokines in different cellular systems stimulated with Candida albicans. RESULTS: We observed strong association between candidemia and a variant, rs8028958, that significantly affects the expression levels of PLA2G4B in blood. We found that up to 35% of the susceptibility loci affect in vitro cytokine production in response to Candida. Furthermore, potential causal genes located within these loci are enriched for lipid and arachidonic acid metabolism. Using an independent cohort, we also showed that the numbers of risk alleles at these loci are negatively correlated with reactive oxygen species and interleukin-6 levels in response to Candida. Finally, there was a significant correlation between susceptibility and allelic scores based on 16 independent candidemia-associated single-nucleotide polymorphisms that affect monocyte-derived cytokines, but not with T cell-derived cytokines. CONCLUSIONS: Our results prioritize the disturbed lipid homeostasis and oxidative stress as potential mechanisms that affect monocyte-derived cytokines to influence susceptibility to candidemia.
Assuntos
Candida albicans/imunologia , Candidemia/genética , Estudo de Associação Genômica Ampla , Genômica , Alelos , Candida albicans/patogenicidade , Candidemia/microbiologia , Cromossomos Humanos Par 15 , Estudos de Coortes , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Loci Gênicos , Fosfolipases A2 do Grupo IV/sangue , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Homeostase , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-6/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Celiac disease (CeD) is a complex immune-mediated disease. Genetic studies have implicated 43 predisposing loci that collectively explain some 50% of the genetic variance in CeD. More than â¼90% of CeD-associated single nucleotide polymorphisms (SNPs) localize to the non-coding genome, which we need to better understand to translate genetic knowledge into clinical practice. New genomic technologies and resources are permitting a systematic analysis of the functional elements in the non-coding part of the genome. Here we explain how investigating the regulatory and epigenomic landscape will help to pinpoint the cell types involved in CeD, and the driver genes and gene regulatory networks that are affected by CeD-associated SNPs.
Assuntos
Doença Celíaca/genética , Redes Reguladoras de Genes/genética , Genoma Humano , Genômica , Doença Celíaca/fisiopatologia , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Hepatocyte apoptosis in nonalcoholic steatohepatitis (NASH) can lead to fibrosis and cirrhosis, which permanently damage the liver. Understanding the regulation of hepatocyte apoptosis is therefore important to identify therapeutic targets that may prevent the progression of NASH to fibrosis. Recently, increasing evidence has shown that long noncoding (lnc) RNAs are involved in various biological processes and that their dysregulation underlies a number of complex human diseases. By performing gene expression profiling of 4,383 lncRNAs in 82 liver samples from individuals with NASH (n = 48), simple steatosis but no NASH (n = 11), and healthy controls (n = 23), we discovered a liver-specific lncRNA (RP11-484N16.1) on chromosome 18 that showed significantly elevated expression in the liver tissue of NASH patients. This lncRNA, which we named lnc18q22.2 based on its chromosomal location, correlated with NASH grade (r = 0.51, P = 8.11 × 10-7 ), lobular inflammation (r = 0.49, P = 2.35 × 10-6 ), and nonalcoholic fatty liver disease activity score (r = 0.48, P = 4.69 × 10-6 ). The association of lnc18q22.2 to liver steatosis and steatohepatitis was replicated in 44 independent liver biopsies (r = 0.47, P = 0.0013). We provided a genetic structure of lnc18q22.2 showing an extended exon 2 in liver. Knockdown of lnc18q22.2 in four different hepatocyte cell lines resulted in severe phenotypes ranging from reduced cell growth to lethality. This observation was consistent with pathway analyses of genes coexpressed with lnc18q22.2 in human liver or affected by lnc18q22.2 knockdown. CONCLUSION: We identified an lncRNA that can play an important regulatory role in liver function and provide new insights into the regulation of hepatocyte viability in NASH. (Hepatology 2017;66:794-808).
Assuntos
Sobrevivência Celular/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Longo não Codificante/genética , Apoptose/genética , Biópsia por Agulha , Células Cultivadas/metabolismo , Células Cultivadas/patologia , Progressão da Doença , Feminino , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Masculino , Análise em Microsséries , Medição de Risco , Estudos de AmostragemRESUMO
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Assuntos
MicroRNAs/metabolismo , Degeneração Neural/metabolismo , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , HumanosRESUMO
Although genome-wide association studies and fine mapping have identified 39 non-HLA loci associated with celiac disease (CD), it is difficult to pinpoint the functional variants and susceptibility genes in these loci. We applied integrative approaches to annotate and prioritize functional single nucleotide polymorphisms (SNPs), genes and pathways affected in CD. CD-associated SNPs were intersected with regulatory elements categorized by the ENCODE project to prioritize functional variants, while results from cis-expression quantitative trait loci (eQTL) mapping in 1469 blood samples were combined with co-expression analyses to prioritize causative genes. To identify the key cell types involved in CD, we performed pathway analysis on RNA-sequencing data from different immune cell populations and on publicly available expression data on non-immune tissues. We discovered that CD SNPs are significantly enriched in B-cell-specific enhancer regions, suggesting that, besides T-cell processes, B-cell responses play a major role in CD. By combining eQTL and co-expression analyses, we prioritized 43 susceptibility genes in 36 loci. Pathway and tissue-specific expression analyses on these genes suggested enrichment of CD genes in the Th1, Th2 and Th17 pathways, but also predicted a role for four genes in the intestinal barrier function. We also discovered an intricate transcriptional connectivity between CD susceptibility genes and interferon-γ, a key effector in CD, despite the absence of CD-associated SNPs in the IFNG locus. Using systems biology, we prioritized the CD-associated functional SNPs and genes. By highlighting a role for B cells in CD, which classically has been described as a T-cell-driven disease, we offer new insights into the mechanisms and pathways underlying CD.
Assuntos
Doença Celíaca/genética , Interferon gama/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Doença Celíaca/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/genética , Anotação de Sequência MolecularRESUMO
Using the Immunochip for genotyping, we identified 39 non-human leukocyte antigen (non-HLA) loci associated to celiac disease (CeD), an immune-mediated disease with a worldwide frequency of â¼1%. The most significant non-HLA signal mapped to the intronic region of 70 kb in the LPP gene. Our aim was to fine map and identify possible functional variants in the LPP locus. We performed a meta-analysis in a cohort of 25 169 individuals from six different populations previously genotyped using Immunochip. Imputation using data from the Genome of the Netherlands and 1000 Genomes projects, followed by meta-analysis, confirmed the strong association signal on the LPP locus (rs2030519, P = 1.79 × 10(-49)), without any novel associations. The conditional analysis on this top SNP-indicated association to a single common haplotype. By performing haplotype analyses in each population separately, as well as in a combined group of the four populations that reach the significant threshold after correction (P < 0.008), we narrowed down the CeD-associated region from 70 to 2.8 kb (P = 1.35 × 10(-44)). By intersecting regulatory data from the ENCODE project, we found a functional SNP, rs4686484 (P = 3.12 × 10(-49)), that maps to several B-cell enhancer elements and a highly conserved region. This SNP was also predicted to change the binding motif of the transcription factors IRF4, IRF11, Nkx2.7 and Nkx2.9, suggesting its role in transcriptional regulation. We later found significantly low levels of LPP mRNA in CeD biopsies compared with controls, thus our results suggest that rs4686484 is the functional variant in this locus, while LPP expression is decreased in CeD.
Assuntos
Doença Celíaca/genética , Proteínas do Citoesqueleto/genética , Proteínas com Domínio LIM/genética , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Fatores Reguladores de Interferon/genética , Desequilíbrio de Ligação , Fatores de Transcrição/genéticaRESUMO
Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases.
Assuntos
Doenças Autoimunes/genética , Mapeamento Cromossômico , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , RNA não Traduzido , Doenças Autoimunes/metabolismo , Autofagia/genética , Doença Celíaca/genética , Doença Celíaca/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genéticaRESUMO
Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.
Assuntos
Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , RNA Longo não Codificante , Estudo de Associação Genômica Ampla , Genótipo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Distribuição TecidualRESUMO
It has been found that the majority of disease-associated genetic variants identified by genome-wide association studies are located outside of protein-coding regions, where they seem to affect regions that control transcription (promoters, enhancers) and non-coding RNAs that also can influence gene expression. In this review, we focus on two classes of non-coding RNAs that are currently a major focus of interest: micro-RNAs and long non-coding RNAs. We describe their biogenesis, suggested mechanism of action, and discuss how these non-coding RNAs might be affected by disease-associated genetic alterations. The discovery of these alterations has already contributed to a better understanding of the etiopathology of human diseases and yielded insight into the function of these non-coding RNAs. We also provide an overview of available databases, bioinformatics tools, and high-throughput techniques that can be used to study the mechanism of action of individual non-coding RNAs. This article is part of a Special Issue entitled: From Genome to Function.
RESUMO
Coeliac disease (CeD) is an immune-mediated disorder characterised by gluten-triggered inflammation and damage in the small intestine, with lifelong gluten-free diet (GFD) as the only treatment. It is a multifactorial disease, involving genetic and environmental susceptibility factors, and its complexity and lack of comprehensive human model systems have hindered understanding of its pathogenesis and development of new treatments. Therefore, it is crucial to establish systems that recapitulate patient genetic background and the interactions between the small intestinal epithelial barrier, immune cells, and environment that contribute to CeD. In this review, we discuss disease complexity, recent advances in stem cell biology, organoids, tissue co-cultures, and organ-on-chip (OoC) systems that facilitate the development of comprehensive human model systems, and model applications in preclinical studies of potential treatments.
RESUMO
Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.
Assuntos
Diferenciação Celular , Células Epiteliais , Células-Tronco Pluripotentes Induzidas , Intestino Delgado , Neurônios , Organoides , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Organoides/metabolismo , Organoides/citologia , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologiaRESUMO
Multiple sclerosis is a chronic demyelinating disease of the central nervous system. There is a need for new circulating biomarkers for multiple sclerosis, in particular, markers that differentiate multiple sclerosis subtypes (relapsing-remitting, secondary progressive and primary progressive multiple sclerosis), as this can help in making treatment decisions. In this study, we explore two classes of potential multiple sclerosis biomarkers-proteins and microRNAs-circulating in the cerebrospinal fluid and serum. Targeted medium-throughput proteomics (92 proteins) and microRNA sequencing were performed on serum samples collected in a cross-sectional case-control cohort (cohort I, controls n = 30, multiple sclerosis n = 75) and a prospective multiple sclerosis cohort (cohort II, n = 93). For cohort I, we also made these measurements in paired cerebrospinal fluid samples. In the cohort I cerebrospinal fluid, we observed differences between multiple sclerosis and controls for 13 proteins, including some previously described to be markers for multiple sclerosis [e.g. CD27, C-X-C motif chemokine 13 (CXCL13) and interleukin-7 (IL7)]. No microRNAs were significantly differentially expressed between multiple sclerosis and controls in the cerebrospinal fluid. In serum, 10 proteins, including angiopoietin-1 receptor (TIE2), and 16 microRNAs were significantly different between relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis after performing a meta-analysis combining both cohorts. In the prospective part of the study, participants with relapsing-remitting multiple sclerosis were followed for around 3 years, during which time 12 participants converted to secondary progressive multiple sclerosis. In these longitudinally collected serum samples, we observed a peak in granzyme B, A and H proteins around the time of conversion. Single-sample enrichment analysis of serum microRNA profiles revealed that the peak in granzyme B levels around conversion coincides with enrichment for microRNAs that are enriched in CD4+, CD8+ and natural killer cells (e.g. miRNA-150). We identified several proteins and microRNAs in serum that represent potential biomarkers for relapsing-remitting and secondary progressive multiple sclerosis. Conversion to secondary progressive disease is marked by a peak in granzyme B levels and enrichment for immune-related microRNAs. This indicates that specific immune cell-driven processes may contribute to the conversion of relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis.