RESUMO
Activation of GABA(A) receptors (GABA(A)Rs) produces two forms of inhibition: phasic inhibition generated by the rapid, transient activation of synaptic GABA(A)Rs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of perisynaptic or extrasynaptic GABA(A)Rs, which can detect extracellular GABA. Such tonic GABA(A)R-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABA(A) receptor openings. This tonic GABA(A)R conductance is resistant to the competitive GABA(A)R antagonist SR95531 (gabazine), which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker, picrotoxin. When slices are perfused with 200 nm GABA, a concentration that is comparable to CSF concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABA(A)Rs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations.
Assuntos
Fenômenos Biofísicos/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Fenômenos Biofísicos/efeitos dos fármacos , Biofísica , Cromatografia Líquida de Alta Pressão , Giro Denteado/citologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microdiálise , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologiaRESUMO
Because of a complex dendritic structure, pyramidal neurons have a large membrane surface relative to other cells and so a large electrical capacitance and a large membrane time constant (τm). This results in slow depolarizations in response to excitatory synaptic inputs, and consequently increased and variable action potential latencies, which may be computationally undesirable. Tonic activation of GABAA receptors increases membrane conductance and thus regulates neuronal excitability by shunting inhibition. In addition, tonic increases in membrane conductance decrease the membrane time constant (τm), and improve the temporal fidelity of neuronal firing. Here we performed whole-cell current clamp recordings from hippocampal CA1 pyramidal neurons and found that bath application of 10µM GABA indeed decreases τm in these cells. GABA also decreased first spike latency and jitter (standard deviation of the latency) produced by current injection of 2 rheobases (500 ms). However, when larger current injections (3-6 rheobases) were used, GABA produced no significant effect on spike jitter, which was low. Using mathematical modeling we demonstrate that the tonic GABAA conductance decreases rise time, decay time and half-width of EPSPs in pyramidal neurons. A similar effect was observed on EPSP/IPSP pairs produced by stimulation of Schaffer collaterals: the EPSP part of the response became shorter after application of GABA. Consistent with the current injection data, a significant decrease in spike latency and jitter was obtained in cell attached recordings only at near-threshold stimulation (50% success rate, S50). When stimulation was increased to 2- or 3- times S50, GABA significantly affected neither spike latency nor spike jitter. Our results suggest that a decrease in τm associated with elevations in ambient GABA can improve EPSP-spike precision at near-threshold synaptic inputs.