Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 25(12): 4274-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21873556

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR). The most common mutation, ΔF508, causes retention of CFTR in the endoplasmic reticulum (ER). Some CF abnormalities can be explained by altered Ca(2+) homeostasis, although it remains unknown how CFTR influences calcium signaling. This study examined the novel hypothesis that store-operated calcium entry (SOCE) through Orai1 is abnormal in CF. The significance of Orai1-mediated SOCE for increased interleukin-8 (IL-8) expression in CF was also investigated. CF and non-CF human airway epithelial cell line and primary cells (obtained at lung transplantation) were used in Ca(2+) imaging, electrophysiology, and fluorescence imaging experiments to explore differences in Orai1 function in CF vs. non-CF cells. Protein expression and localization was assessed by Western blots, cell surface biotinylation, ELISA, and image correlation spectroscopy (ICS). We show here that store-operated Ca(2+) entry (SOCE) is elevated in CF human airway epithelial cells (hAECs; ≈ 1.8- and ≈ 2.5-fold for total Ca(2+)(i) increase and Ca(2+) influx rate, respectively, and ≈ 2-fold increase in the I(CRAC) current) and is caused by increased exocytotic insertion (≈ 2-fold) of Orai1 channels into the plasma membrane, which is normalized by rescue of ΔF508-CFTR trafficking to the cell surface. Augmented SOCE in CF cells is a major factor leading to increased IL-8 secretion (≈ 2-fold). CFTR normally down-regulates the Orai1/stromal interaction molecule 1 (STIM1) complex, and loss of this inhibition due to the absence of CFTR at the plasma membrane helps to explain the potentiated inflammatory response in CF cells.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Fibrose Cística/metabolismo , Interleucina-8/biossíntese , Sequência de Bases , Canais de Cálcio/genética , Membrana Celular/metabolismo , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Primers do DNA/genética , Técnicas de Silenciamento de Genes , Humanos , Potenciais da Membrana , Proteínas de Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , RNA Interferente Pequeno/genética , Mucosa Respiratória/metabolismo , Transdução de Sinais , Molécula 1 de Interação Estromal
2.
Br J Pharmacol ; 173(11): 1728-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26894321

RESUMO

BACKGROUND AND PURPOSE: Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) patients due to exacerbated inflammation. To date, the only anti-inflammatory drug available to CF patients is high-dose ibuprofen, which can slow pulmonary disease progression, but whose cyclooxygenase-dependent digestive adverse effects limit its clinical use. Here we have tested sulindac, another non-steroidal anti-inflammatory drug with an undefined anti-inflammatory effect in CF airway epithelial cells. EXPERIMENTAL APPROACH: Using in vitro and in vivo models, we NF-κB activity and IL-8 secretion. In HeLa-F508del cells, we performed luciferase reporter gene assays in order to measure i) IL-8 promoter activity, and ii) the activity of synthetic promoter containing NF-κB responsive elements. We quantified IL-8 secretion in airway epithelial CFBE cells cultured at an air-liquid interface and in a mouse model of CF. KEY RESULTS: Sulindac inhibited the transcriptional activity of NF-κB and decreased IL-8 transcription and secretion in TNF-α stimulated CF cells via a cyclooxygenase-independent mechanism. This effect was confirmed in vivo in a mouse model of CF induced by intra-tracheal instillation of LPS, with a significant decrease of the induction of mRNA for MIP-2, following treatment with sulindac. CONCLUSION AND IMPLICATIONS: Overall, sulindac decrease lung inflammation by a mechanism independent of cycolooxygenase. This drug could be beneficially employed in CF.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Fibrose Cística/tratamento farmacológico , Prostaglandina-Endoperóxido Sintases/metabolismo , Sulindaco/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Linhagem Celular , Fibrose Cística/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulindaco/administração & dosagem
3.
Int J Biochem Cell Biol ; 52: 94-102, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24631642

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes an epithelial anion channel. Since the identification of the disease in 1938 and up until 2012, CF patients have been treated exclusively with medications aimed at bettering their respiratory, digestive, inflammatory and infectious symptoms. The identification of the CFTR gene in 1989 gave hopes of rapidly finding a cure for the disease, for which over 1950 mutations have been identified. Since 2012, recent approaches have enabled the identification of small molecules targeting either the CFTR protein directly or its key processing steps, giving rise to novel promising therapeutic tools. This review presents the current CFTR mutation classifications according to their clinical consequences and to their effect on the structure and function of the CFTR channel. How these classifications are essential in the establishment of mutation-targeted therapeutic strategies is then discussed. The future of CFTR-targeted treatment lies in combinatory therapies that will enable CF patients to receive a customized treatment.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Mutação , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA