Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Ultrasound Med ; 38(5): 1167-1177, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30218456

RESUMO

OBJECTIVES: Intraventricular pressure (IVP) is one of the most important measurements for evaluating cardiac function, but this measurement is not currently easily assessable in the clinic. The primary reason for this is the absence of a noninvasive technique for measuring IVP. In this study, we investigate the relationship between IVP and dynamic myocardial stiffness measured by shear wave elasticity imaging (SWEI) and assess the feasibility of measuring IVP using SWEI. METHODS: In 8 isolated working rabbit hearts, IVP was recorded in the left ventricle using a pressure catheter. Simultaneously, myocardial stiffness was recorded by SWEI. Using the peak values for IVP and SWEI measured stiffness, SWEI measurements were calibrated and converted to IVP. RESULTS: A linear relationship with zero intercept was observed between IVP and SWEI, with the average slope of 0.318 kPa/mm Hg, R2 = 0.89. Using one point on the IVP/SWEI curve, SWEI measurements were converted to IVP. Estimated pressure using SWEI and IVP were linearly correlated with the slope of 0.95, R2 = 0.88 (mean end diastolic pressure by pressure catheter = 12.716 mm Hg and by SWEI=14.726 mm Hg), indicating the near equivalence of the 2 measurements. CONCLUSION: We have shown that SWEI measurements are linearly related to IVP; therefore, pressure-based indices could potentially be derived from SWEI ultrasound elastography. The feasibility of using SWEI to estimate IVP with a single point calibration was also shown in this study.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Coração/diagnóstico por imagem , Coração/fisiologia , Pressão Ventricular/fisiologia , Animais , Estudos de Viabilidade , Coração/fisiopatologia , Modelos Animais , Coelhos
2.
J Cardiovasc Electrophysiol ; 26(9): 1009-1018, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25970142

RESUMO

INTRODUCTION: Elastography imaging can provide radiofrequency ablation (RFA) lesion assessment due to tissue stiffening at the ablation site. An important aspect of assessment is the spatial and temporal stability of the region of stiffness increase in the peri-ablation period. The aim of this study was to use 2 ultrasound-based elastography techniques, shear wave elasticity imaging (SWEI) and acoustic radiation force impulse (ARFI) imaging, to monitor the evolution of tissue stiffness at ablation sites in the 30 minutes following lesion creation. METHODS AND RESULTS: In 6 canine subjects, SWEI measurements and 2-D ARFI images were acquired at 6 ventricular endocardial RFA sites before, during, and for 30 minutes postablation. An immediate increase in tissue stiffness was detected during RFA, and the area of the postablation region of stiffness increase (RoSI) as well as the relative stiffness at the RoSI center was stable approximately 2 minutes after ablation. Of note is the observation that relative stiffness in the region adjacent to the RoSI increased slightly during the first 15 minutes, consistent with local fluid displacement or edema. The magnitude of this increase, ∼0.5-fold from baseline, was significantly less than the magnitude of the stiffness increase directly inside the RoSI, which was greater than 3-fold from baseline. CONCLUSIONS: Ultrasound-based SWEI and ARFI imaging detected an immediate increase in tissue stiffness during RFA, and the stability and magnitude of the stiffness change suggest that consistent elasticity-based lesion assessment is possible 2 minutes after and for at least 30 minutes following ablation.

3.
J Cardiovasc Electrophysiol ; 25(12): 1275-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25132292

RESUMO

BACKGROUND: Visual confirmation of radiofrequency ablation (RFA) lesions during clinical cardiac ablation procedures could improve procedure efficacy, safety, and efficiency. It was previously shown that acoustic radiation force impulse (ARFI) imaging can identify RFA lesions in vitro and in vivo in an animal model. This is the "first-in-human" feasibility demonstration of intracardiac ARFI imaging of RFA lesions in patients undergoing catheter ablation for atrial flutter (AFL) or atrial fibrillation (AF). METHODS AND RESULTS: Patients scheduled for right atrial (RA) ablation for AFL or left atrial (LA) ablation for drug refractory AF were eligible for imaging. Diastole-gated intracardiac ARFI images were acquired using one of two equipment configurations: (1) a Siemens ACUSON S2000™ ultrasound scanner and 8/10Fr AcuNav™ ultrasound catheter, or (2) a CARTO 3™ integrated Siemens SC2000™ and 10Fr SoundStar™ ultrasound catheter. A total of 11 patients (AFL = 3; AF = 8) were imaged. ARFI images were acquired of ablation target regions, including the RA cavotricuspid isthmus (CTI), and the LA roof, pulmonary vein ostia, posterior wall, posterior mitral valve annulus, and the ridge between the pulmonary vein and LA appendage. ARFI images revealed increased relative myocardial stiffness at ablation catheter contact sites after RFA and at anatomical mapping-tagged RFA treatment sites. CONCLUSIONS: ARFI images from a pilot group of patients undergoing catheter ablation for AFL and AF demonstrate the ability of this technique to identify intra-procedure RFA lesion formation. The results encourage further refinement of ARFI imaging clinical tools and continued investigation in larger clinical trials.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Procedimentos Cirúrgicos Cardiovasculares/métodos , Ablação por Cateter/métodos , Técnicas de Imagem por Elasticidade/métodos , Cirurgia Assistida por Computador/métodos , Sistemas Computacionais , Ecocardiografia/métodos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
4.
Ultrason Imaging ; 36(3): 167-176, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24626564

RESUMO

We developed new forward-viewing matrix transducers consisting of double ring arrays of 118 total PZT elements integrated into catheters used to deploy medical interventional devices. Our goal is 3D ultrasound guidance of medical device implantation to reduce x-ray fluoroscopy exposure. The double ring arrays were fabricated on inner and outer custom polyimide flexible circuits with inter-element spacing of 0.20 mm and then wrapped around an 11 French (Fr) catheter to produce a 15 Fr catheter (outer diameter [O.D.]). We used a braided cabling technology to connect the elements to the Volumetrics Medical Imaging (VMI) real-time 3D ultrasound scanner. Transducer performance yielded an average -6 dB fractional bandwidth of 49% ± 11% centered at 4.4 MHz for 118 elements. Real-time 3D cardiac scans of the in vivo pig model yielded good image quality including en face views of the tricuspid valve and real-time 3D guidance of an endo-myocardial biopsy catheter introduced into the left ventricle.

5.
Ultrason Imaging ; 36(2): 133-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24554293

RESUMO

We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 µm) than at ablated sites (6.06 ± 0.94 µm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = -0.03 ± 0.28, CNR = 0.74 ± 0.68).


Assuntos
Ablação por Cateter/métodos , Técnicas de Imagem por Elasticidade/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Procedimentos Cirúrgicos Cardíacos/métodos , Cães , Átrios do Coração/diagnóstico por imagem , Masculino , Sensibilidade e Especificidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-32894714

RESUMO

Real-time 3-D intracardiac echocardiography (ICE) can enable faster imaging of surfaces orthogonal to the transducer, such as the pulmonary vein (PV) antra and cardiac valve annuli. However, the requirement for a 2-D grid of individually wired elements makes a traditional matrix array challenging to implement within an intravenous catheter. Helicoid array transducers are linear array transducers twisted about their long axis, allowing imaging of different elevation slices using sub-apertures. In this work, we examined the 3-D imaging characteristics of helicoid array transducers through simulations using Field II software and experimental measurements. We report results for varying transducer parameters, such as twist rate and sub-aperture size. We also discuss design considerations for these imaging parameters as they pertain to volumetric imaging of the heart.


Assuntos
Imageamento Tridimensional , Transdutores , Desenho de Equipamento , Imagens de Fantasmas , Ultrassonografia
7.
J Cardiovasc Electrophysiol ; 21(5): 557-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20021518

RESUMO

INTRODUCTION: Lesion placement and transmurality are critical factors in the success of cardiac transcatheter radiofrequency ablation (RFA) treatments for supraventricular arrhythmias. This study investigated the capabilities of catheter transducer based acoustic radiation force impulse (ARFI) ultrasound imaging for quantifying ablation lesion dimensions. METHODS AND RESULTS: RFA lesions were created in vitro in porcine ventricular myocardium and imaged with an intracardiac ultrasound catheter transducer capable of acquiring spatially registered B-mode and ARFI images. The myocardium was sliced along the imaging plane and photographed. The maximum ARFI-induced displacement images of the lesion were normalized and spatially registered with the photograph by matching the surfaces of the tissue in the B-mode and photographic images. The lesion dimensions determined by a manual segmentation of the photographed lesion based on the visible discoloration of the tissue were compared to automatic segmentations of the ARFI image using 2 different calculated thresholds. ARFI imaging accurately localized and sized the lesions within the myocardium. Differences in the maximum lateral and axial dimensions were statistically below 2 mm and 1 mm, respectively, for the 2 thresholding methods, with mean percent overlap of 68.7 +/- 5.21% and 66.3 +/- 8.4% for the 2 thresholds used. CONCLUSION: ARFI imaging is capable of visualizing myocardial RFA lesion dimensions to within 2 mm in vitro. Visualizing lesions during transcatheter cardiac ablation procedures could improve the success of the treatment by imaging lesion line discontinuity and potentially reducing the required number of ablation lesions and procedure time.


Assuntos
Ablação por Cateter/efeitos adversos , Diagnóstico por Imagem/métodos , Miocárdio/patologia , Animais , Elasticidade , Processamento de Imagem Assistida por Computador , Suínos
9.
Ultrasound Med Biol ; 44(3): 551-561, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29331356

RESUMO

Shear wave elasticity imaging (SWEI) is a novel ultrasound elastography technique for assessing tissue stiffness. In this study, we investigate the potential of SWEI for providing diastolic functional assessment. In 11 isolated rabbit hearts, pressure-volume (PV) measurements were recorded simultaneously with SWEI recordings from the left ventricle free wall before and after induction of global ischemia. PV-based end diastolic stiffness increased by 100% after ischemia (p <0.05), and SWEI stiffness showed an increase of 103% (p <0.05). The relaxation time constant (τ) before and after ischemia derived from pressure and SWEI curves showed increases of 79% and 76%, respectively (p <0.05). A linear regression between pressure-derived and SWEI-based (τ) showed a slope of 1.164 with R2 = 0.80, indicating the near equivalence of the two assessments. SWEI can be used to derive (τ) values and myocardial end diastolic stiffness. In global conditions, these measurements are consistent with PV measurements of diastolic function.


Assuntos
Diástole , Técnicas de Imagem por Elasticidade/métodos , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/fisiopatologia , Animais , Modelos Animais de Doenças , Coração/diagnóstico por imagem , Coração/fisiopatologia , Coelhos
10.
J Neural Eng ; 4(3): 309-21, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17873433

RESUMO

A fully implantable neural data acquisition system is a key component of a clinically viable cortical brain-machine interface. We present the design and implementation of a single-chip device that serves the processing needs of such a system. Our device processes 96 channels of multi-unit neural data and performs all digital processing necessary for bidirectional wireless communication. The implementation utilizes a single programmable logic device that is responsible for performing data reduction on the 96 channels of neural data, providing a bidirectional telemetry interface to a transceiver and performing command interpretation and system supervision. The device takes as input neural data sampled at 31.25 kHz and outputs a line-encoded serial bitstream containing the information to be transmitted by the transceiver. Data can be output in one of the following four modes: (1) streaming uncompressed data from a single channel, (2) extracted spike waveforms from any subset of the 96 channels, (3) 1 ms bincounts for each channel or (4) streaming data along with extracted spikes from a single channel. The device can output up to 2000 extracted spikes per second with latencies suitable for a brain-machine interface application. This device provides all of the digital processing components required by a fully implantable system.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Eletroencefalografia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Telemetria/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Integração de Sistemas
11.
Ultrasound Med Biol ; 33(8): 1277-84, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17478032

RESUMO

A transducer originally designed for transesophageal echocardiography (TEE) was adapted for real-time volumetric endoscopic imaging of the brain. The transducer consists of a 36 x 36 array with an interelement spacing of 0.18 mm. There are 504 transmitting and 252 receive channels placed in a regular pattern in the array. The operating frequency is 4.5 MHz with a -6 dB bandwidth of 30%. The transducer is fabricated on a 10-layer flexible circuit from Microconnex (Snoqualmie, WA, USA). The purpose of this study is to evaluate the clinical feasibility of real-time 3-D intracranial ultrasound with this device. The Volumetrics Medical Imaging (Durham, NC, USA) 3-D scanner was used to obtain images in a canine model. A transcalvarial acoustic window was created under general anesthesia in the animal laboratory by placing a 10-mm burr hole in the high parietal calvarium of a 50-kg canine subject. The burr-hole was placed in a left parasagittal location to avoid the sagittal sinus, and the transducer was placed against the intact dura mater for ultrasound imaging. Images of the lateral ventricles were produced, including real-time 3-D guidance of a needle puncture of one ventricle. In a second canine subject, contrast-enhanced 3-D Doppler color flow images were made of the cerebral vessels including the complete Circle of Willis. Clinical applications may include real-time 3-D guidance of cerebrospinal fluid extraction from the lateral ventricles and bedside evaluation of critically ill patients where computed tomography and magnetic resonance imaging techniques are unavailable.


Assuntos
Ecoencefalografia/métodos , Ultrassonografia de Intervenção/métodos , Animais , Artéria Cerebral Anterior/patologia , Encéfalo/patologia , Artéria Carótida Interna/patologia , Meios de Contraste , Cães , Ecoencefalografia/instrumentação , Desenho de Equipamento , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Cuidados Intraoperatórios/métodos , Angiografia por Ressonância Magnética/métodos , Imagens de Fantasmas , Transdutores
12.
Ultrasound Med Biol ; 33(11): 1706-19, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17698282

RESUMO

Acoustic radiation force impulse (ARFI) imaging has been demonstrated to be capable of visualizing variations in local stiffness within soft tissue. Recent advances in ARFI beam sequencing and parallel imaging have shortened acquisition times and lessened transducer heating to a point where ARFI acquisitions can be executed at high frame rates on commercially available diagnostic scanners. In vivo ARFI images were acquired with a linear array placed on an exposed canine heart. The electrocardiogram (ECG) was also recorded. When coregistered with the ECG, ARFI displacement images of the heart reflect the expected myocardial stiffness changes during the cardiac cycle. A radio-frequency ablation was performed on the epicardial surface of the left ventricular free wall, creating a small lesion that did not vary in stiffness during a heartbeat, though continued to move with the rest of the heart. ARFI images showed a hemispherical, stiffer region at the ablation site whose displacement magnitude and temporal variation through the cardiac cycle were less than the surrounding untreated myocardium. Sequences with radiation force pulse amplitudes set to zero were acquired to measure potential cardiac motion artifacts within the ARFI images. The results show promise for real-time cardiac ARFI imaging.


Assuntos
Ecocardiografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Animais , Artefatos , Ablação por Cateter , Cães , Eletrocardiografia , Ventrículos do Coração/diagnóstico por imagem , Contração Miocárdica/fisiologia , Pericárdio/diagnóstico por imagem , Pericárdio/cirurgia , Função Ventricular , Função Ventricular Esquerda/fisiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-17523564

RESUMO

Intracardiac echocardiography (ICE) has been demonstrated to be an effective imaging modality for the guidance of several cardiac procedures, including radiofrequency ablation (RFA). However, assessing lesion size during the ablation with conventional ultrasound has been limited, as the associated changes within the B-mode images often are subtle. Acoustic radiation force impulse (ARFI) imaging is a promising modality to monitor RFAs as it is capable of visualizing variations in local stiffnesses within the myocardium. We demonstrate ARFI imaging with an intracardiac probe that creates higher quality images of the developing lesion. We evaluated the performance of an ICE probe with ARFI imaging in monitoring RFAs. The intracardiac probe was used to create high contrast, high resolution ARFI images of a tissue-mimicking phantom containing stiffer spherical inclusions. The probe also was used to examine an excised segment of an ovine right ventricle with a RFA-created surface lesion. Although the lesion was not visible in conventional B-mode images, the ARFI images were able to show the boundaries between the lesion and the surrounding tissue. ARFI imaging with an intracardiac probe then was used to monitor cardiac ablations in vivo. RFAs were performed within the right atrium of an ovine heart, and B-mode and ARFI imaging with the intracardiac probe was used to monitor the developing lesions. Although there was little indication of a developing lesion within the B-mode images, the corresponding ARFI images displayed regions around the ablation site that displaced less.


Assuntos
Algoritmos , Cateterismo Cardíaco/instrumentação , Ablação por Cateter/métodos , Ecocardiografia/instrumentação , Aumento da Imagem/instrumentação , Cirurgia Assistida por Computador/instrumentação , Transdutores , Animais , Ablação por Cateter/instrumentação , Ecocardiografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos , Cirurgia Assistida por Computador/métodos
14.
J Am Soc Echocardiogr ; 30(1): 90-96, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27843103

RESUMO

BACKGROUND: Myocardial contractility, a significant determinant of cardiac function, is valuable for diagnosis and evaluation of treatment in cardiovascular disorders including heart failure. Shear wave elasticity imaging (SWEI) is a newly developed ultrasound-based elastographic technique that can directly assess the stiffness of cardiac tissue. The aim of this study was to verify the ability of this technique to quantify contractility changes in the myocardium. METHODS: In 12 isolated rabbit hearts, SWEI measurements were made of systolic stiffness at five different coronary perfusion pressures from 0 to 92 mm Hg. The changes in coronary perfusion were used to induce acute stepwise reversible changes in cardiac contractility via the Gregg effect. The Gregg effect is the dependency of contractility on coronary perfusion. In four of the hearts, the measurements were repeated after delivery of gadolinium, which is known to block the Gregg effect. RESULTS: Systolic stiffness measured by SWEI changed linearly with coronary perfusion pressure, with a slope of 0.27 kPa/mm Hg (mean of 95% CI, R2 = 0.73). As expected, the change in contractility due to the Gregg effect was blocked by gadolinium, with a significant reduction of the slope to 0.08 kPa/mm Hg. CONCLUSIONS: SWEI measurements of systolic stiffness provide an index of contractility in the unloaded isolated rabbit heart. Although this study was done under ideal imaging conditions and with nonphysiologic loading conditions, it reinforces the concept that this ultrasound technique has the potential to provide a direct and noninvasive index of cardiac contractility.


Assuntos
Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Ventrículos do Coração/diagnóstico por imagem , Contração Miocárdica/fisiologia , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Animais , Pressão Sanguínea/fisiologia , Circulação Coronária/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Artigo em Inglês | MEDLINE | ID: mdl-16471436

RESUMO

Modifications were made to a commercial real-time, three-dimensional (3-D) ultrasound system for near simultaneous 3-D scanning with two matrix array transducers. As a first illustration, a transducer cable assembly was modified to incorporate two independent, 3-D intra-cardiac echo catheters, a 7 Fr (2.3 mm O.D.) side scanning catheter and a 14 Fr (4.7 mm O.D) forward viewing catheter with accessory port, each catheter using 85 channels operating at 5 MHz. For applications in treatment of atrial fibrillation, the goal is to place the sideviewing catheter within the coronary sinus to view the whole left atrium, including a pulmonary vein. Meanwhile, the forward-viewing catheter inserted within the left atrium is directed toward the ostium of a pulmonary vein for therapy using the integrated accessory port. Using preloaded, phasing data, the scanner switches between catheters automatically, at the push of a button, with a delay of about 1 second, so that the clinician can view the therapy catheter with the coronary sinus catheter and vice versa. Preliminary imaging studies in a tissue phantom and in vivo show that our system successfully guided the forward-viewing catheter toward a target while being imaged with the sideviewing catheter. The forward-viewing catheter then was activated to monitor the target while we mimicked therapy delivery. In the future, the system will switch between 3-D probes on a line-by-line basis and display both volumes simultaneously.


Assuntos
Algoritmos , Ecocardiografia Tridimensional/instrumentação , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/instrumentação , Transdutores , Animais , Sistemas Computacionais , Cães , Ecocardiografia Tridimensional/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
IEEE Trans Ultrason Ferroelectr Freq Control ; 53(11): 1999-2008, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17091836

RESUMO

Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time, three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intraoperative guidance tool. The integration of RT3D with recent advances in robotic surgery also can increase automation and ease of use. In this study, a 1-cm diameter probe for RT3D has been used laparoscopically for in vivo imaging of a canine. The probe, which operates at 5 MHz, was used to image the spleen, liver, and gall bladder as well as to guide surgical instruments. Furthermore, the three-dimensional (3-D) measurement system of the volumetric scanner used with this probe was tested as a guidance mechanism for a robotic linear motion system in order to simulate the feasibility of RT3D/robotic surgery integration. Using images acquired with the 3-D laparoscopic ultrasound device, coordinates were acquired by the scanner and used to direct a robotically controlled needle toward desired in vitro targets as well as targets in a post-mortem canine. The rms error for these measurements was 1.34 mm using optical alignment and 0.76 mm using ultrasound alignment.


Assuntos
Imageamento Tridimensional/instrumentação , Laparoscópios , Robótica/instrumentação , Transdutores , Ultrassonografia de Intervenção/instrumentação , Animais , Cães , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Imageamento Tridimensional/métodos , Laparoscopia/métodos , Robótica/métodos , Integração de Sistemas , Ultrassonografia de Intervenção/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-27008665

RESUMO

In the past decade, there has been an increased interest in characterizing cardiac tissue mechanics utilizing newly developed ultrasound-based elastography techniques. These methods excite the tissue mechanically and track the response. Two frequently used methods, acoustic radiation force impulse (ARFI) and shear-wave elasticity imaging (SWEI), have been considered qualitative and quantitative techniques providing relative and absolute measures of tissue stiffness, respectively. Depending on imaging conditions, it is desirable to identify indices of cardiac function that could be measured by ARFI and SWEI and to characterize the relationship between the measures. In this study, we have compared two indices (i.e., relaxation time constant used for diastolic dysfunction assessment and systolic/diastolic stiffness ratio) measured nearly simultaneously by M-mode ARFI and SWEI techniques. We additionally correlated ARFI-measured inverse displacements with SWEI-measured values of the shear modulus of stiffness. For the eight animals studied, the average relaxation time constant ( τ) measured by ARFI and SWEI were ([Formula: see text]) and ([Formula: see text]), respectively ([Formula: see text]). Average systolic/diastolic stiffness ratios for ARFI and SWEI measurements were 6.01±1.37 and 7.12±3.24, respectively ([Formula: see text]). Shear modulus of stiffness (SWEI) was linearly related to inverse displacement values (ARFI) with a 95% CI for the slope of 0.010-0.011 [Formula: see text] ( R(2)=0.73). In conclusion, the relaxation time constant and the systolic/diastolic stiffness ratio were calculated with good agreement between the ARFI- and SWEI-derived measurements. ARFI relative and SWEI absolute stiffness measurements were linearly related with varying slopes based on imaging conditions and subject tissue properties.


Assuntos
Técnicas de Imagem por Elasticidade , Coração/diagnóstico por imagem , Ultrassonografia , Animais , Fenômenos Mecânicos , Coelhos
18.
Artigo em Inglês | MEDLINE | ID: mdl-16060512

RESUMO

Acoustic radiation force impulse (ARFI) imaging techniques were used to monitor radiofrequency (RF) ablation of ovine cardiac tissue in vivo. Additionally, ARFI M-mode imaging methods were used to interrogate both healthy and ablated regions of myocardial tissue. Although induced cardiac lesions were not visualized well in conventional B-mode images, ARFI images of ablation procedures allowed determination of lesion location, shape, and relative size through time. The ARFI M-mode images were capable of distinguishing differences in behavior through the cardiac cycle between healthy and damaged tissue regions. As conventional sonography is often used to guide ablation catheters, ARFI imaging, which requires no additional equipment, may be a convenient modality for monitoring lesion formation in vivo.


Assuntos
Ablação por Cateter/métodos , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/cirurgia , Interpretação de Imagem Assistida por Computador/métodos , Cirurgia Assistida por Computador/métodos , Animais , Estudos de Viabilidade , Projetos Piloto , Ovinos , Estresse Mecânico
19.
IEEE Trans Med Imaging ; 34(2): 465-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25291788

RESUMO

Diastolic heart failure (DHF) is a major source of cardiac related morbidity and mortality in the world today. A major contributor to, or indicator of DHF is a change in cardiac compliance. Currently, there is no accepted clinical method to evaluate the compliance of cardiac tissue in diastolic dysfunction. Shear wave elasticity imaging (SWEI) is a novel ultrasound-based elastography technique that provides a measure of tissue stiffness. Coronary perfusion pressure affects cardiac stiffness during diastole; we sought to characterize the relationship between these two parameters using the SWEI technique. In this work, we demonstrate how changes in coronary perfusion pressure are reflected in a local SWEI measurement of stiffness during diastole. Eight Langendorff perfused isolated rabbit hearts were used in this study. Coronary perfusion pressure was changed in a randomized order (0-90 mmHg range) and SWEI measurements were recorded during diastole with each change. Coronary perfusion pressure and the SWEI measurement of stiffness had a positive linear correlation with the 95% confidence interval (CI) for the slope of 0.009-0.011 m/s/mmHg ( R(2) = 0.88 ). Furthermore, shear modulus was linearly correlated to the coronary perfusion pressure with the 95% CI of this slope of 0.035-0.042 kPa/mmHg ( R(2) = 0.83). In conclusion, diastolic SWEI measurements of stiffness can be used to characterize factors affecting cardiac compliance specifically the mechanical interaction (cross-talk) between perfusion pressure in the coronary vasculature and cardiac muscle. This relationship was found to be linear over the range of pressures tested.


Assuntos
Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Coração/fisiologia , Animais , Insuficiência Cardíaca Diastólica/diagnóstico por imagem , Modelos Lineares , Reperfusão Miocárdica , Coelhos
20.
J Neurosci Methods ; 133(1-2): 27-32, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14757341

RESUMO

We present the design and testing of a 16-channel analog amplifier for processing neural signals. Each channel has the following features: (1) variable gain (70-94 dB), (2) four high pass Bessel filter poles (f(-3 dB)=445 Hz), (3) five low pass Bessel filter poles (f(-3 dB)=6.6 kHz), and (4) differential amplification with a user selectable reference channel to reject common mode background biological noise. Processed signals are time division multiplexed and sampled by an on-board 12-bit analog to digital converter at up to 62.5k samples/s per channel. The board is powered by two low dropout voltage regulators which may be supplied by a single battery. The board measures 8.1 cm x 9.9 cm, weighs 50 g, and consumes up to 130 mW. Its low input-referred noise (1.0 microV(RMS)) makes it possible to process low amplitude neural signals; the board was successfully tested in vivo to process cortically derived extracellular action potentials in primates. Signals processed by this board were compared to those generated by a commercially available system and were found to be nearly identical. Background noise generated by mastication was substantially attenuated by the selectable reference circuit. The described circuit is light weight and low power and is used as a component of a wearable multichannel neural telemetry system.


Assuntos
Amplificadores Eletrônicos , Eletrofisiologia/métodos , Desenho de Equipamento , Microeletrodos , Processamento de Sinais Assistido por Computador/instrumentação , Conversão Análogo-Digital , Eletrônica Médica , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA