Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752514

RESUMO

MOTIVATION: With the rapidly growing volume of knowledge and data in biomedical databases, improved methods for knowledge-graph-based computational reasoning are needed in order to answer translational questions. Previous efforts to solve such challenging computational reasoning problems have contributed tools and approaches, but progress has been hindered by the lack of an expressive analysis workflow language for translational reasoning and by the lack of a reasoning engine-supporting that language-that federates semantically integrated knowledge-bases. RESULTS: We introduce ARAX, a new reasoning system for translational biomedicine that provides a web browser user interface and an application programming interface (API). ARAX enables users to encode translational biomedical questions and to integrate knowledge across sources to answer the user's query and facilitate exploration of results. For ARAX, we developed new approaches to query planning, knowledge-gathering, reasoning and result ranking and dynamically integrate knowledge providers for answering biomedical questions. To illustrate ARAX's application and utility in specific disease contexts, we present several use-case examples. AVAILABILITY AND IMPLEMENTATION: The source code and technical documentation for building the ARAX server-side software and its built-in knowledge database are freely available online (https://github.com/RTXteam/RTX). We provide a hosted ARAX service with a web browser interface at arax.rtx.ai and a web API endpoint at arax.rtx.ai/api/arax/v1.3/ui/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Conhecimento , Software , Bases de Dados Factuais , Idioma , Navegador
2.
BMC Bioinformatics ; 23(1): 400, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175836

RESUMO

BACKGROUND: Biomedical translational science is increasingly using computational reasoning on repositories of structured knowledge (such as UMLS, SemMedDB, ChEMBL, Reactome, DrugBank, and SMPDB in order to facilitate discovery of new therapeutic targets and modalities. The NCATS Biomedical Data Translator project is working to federate autonomous reasoning agents and knowledge providers within a distributed system for answering translational questions. Within that project and the broader field, there is a need for a framework that can efficiently and reproducibly build an integrated, standards-compliant, and comprehensive biomedical knowledge graph that can be downloaded in standard serialized form or queried via a public application programming interface (API). RESULTS: To create a knowledge provider system within the Translator project, we have developed RTX-KG2, an open-source software system for building-and hosting a web API for querying-a biomedical knowledge graph that uses an Extract-Transform-Load approach to integrate 70 knowledge sources (including the aforementioned core six sources) into a knowledge graph with provenance information including (where available) citations. The semantic layer and schema for RTX-KG2 follow the standard Biolink model to maximize interoperability. RTX-KG2 is currently being used by multiple Translator reasoning agents, both in its downloadable form and via its SmartAPI-registered interface. Serializations of RTX-KG2 are available for download in both the pre-canonicalized form and in canonicalized form (in which synonyms are merged). The current canonicalized version (KG2.7.3) of RTX-KG2 contains 6.4M nodes and 39.3M edges with a hierarchy of 77 relationship types from Biolink. CONCLUSION: RTX-KG2 is the first knowledge graph that integrates UMLS, SemMedDB, ChEMBL, DrugBank, Reactome, SMPDB, and 64 additional knowledge sources within a knowledge graph that conforms to the Biolink standard for its semantic layer and schema. RTX-KG2 is publicly available for querying via its API at arax.rtx.ai/api/rtxkg2/v1.2/openapi.json . The code to build RTX-KG2 is publicly available at github:RTXteam/RTX-KG2 .


Assuntos
Conhecimento , Reconhecimento Automatizado de Padrão , Semântica , Software , Ciência Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA