RESUMO
In nature, leafhoppers cover their body surfaces with brochosomes as a protective coating. These leafhopper-produced brochosomes are hollow, buckyball-shaped, nanoscopic spheroids with through-holes distributed across their surfaces, representing a class of deployable optical materials that are rare in nature. Despite their discovery in the 1950s, it remains unknown why the sizes of brochosomes and their through-holes consistently fall within the range of hundreds of nanometers across different leafhopper species. Here, we demonstrate that the hierarchical geometries of brochosomes are engineered within a narrow size range with through-hole architecture to significantly reduce light reflection. By utilizing two-photon polymerization three-dimensional printing to fabricate high-fidelity synthetic brochosomes, we investigated the optical form-to-function relationship of brochosomes. Our results show that the diameters of brochosomes are engineered within a specific size range to maximize broadband light scattering, while the secondary through-holes are designed to function as short-wavelength, low-pass filters, further reducing light reflection. These synergistic effects enable brochosomes to achieve a substantial reduction in specular reflection, by up to approximately 80 to 94%, across a broadband wavelength range. Importantly, brochosomes represent a biological example demonstrating short-wavelength, low-pass filter functionality. Furthermore, our results indicate that the geometries of natural brochosomes may have evolved to effectively reduce reflection from ultraviolet to visible light, thereby enabling leafhoppers to evade predators whose vision spectrum encompasses both ultraviolet and visible light. Our findings offer key design insights into a class of deployable bioinspired optical materials with potential applications in omnidirectional antireflection coatings, optical encryption, and multispectral camouflage.
RESUMO
Conventional pressure sensors rely on solid sensing elements. Instead, inspired by the air entrapment phenomenon on the surfaces of submerged lotus leaves, we designed a pressure sensor that uses the solid-liquid-liquid-gas multiphasic interfaces and the trapped elastic air layer to modulate capacitance changes with pressure at the interfaces. By creating an ultraslippery interface and structuring the electrodes at the nanoscale and microscale, we achieve near-friction-free contact line motion and thus near-ideal pressure-sensing performance. Using a closed-cell pillar array structure in synergy with the ultraslippery electrode surface, our sensor achieved outstanding linearity (R2 = 0.99944 ± 0.00015; nonlinearity, 1.49 ± 0.17%) while simultaneously possessing ultralow hysteresis (1.34 ± 0.20%) and very high sensitivity (79.1 ± 4.3 pF kPa-1). The sensor can operate under turbulent flow, in in vivo biological environments and during laparoscopic procedures. We anticipate that such a strategy will enable ultrasensitive and ultraprecise pressure monitoring in complex fluid environments with performance beyond the reach of the current state-of-the-art.
RESUMO
Developing adaptive materials with geometries that change in response to external stimuli provides fundamental insights into the links between the physical forces involved and the resultant morphologies and creates a foundation for technologically relevant dynamic systems1,2. In particular, reconfigurable surface topography as a means to control interfacial properties3 has recently been explored using responsive gels4, shape-memory polymers5, liquid crystals6-8 and hybrid composites9-14, including magnetically active slippery surfaces12-14. However, these designs exhibit a limited range of topographical changes and thus a restricted scope of function. Here we introduce a hierarchical magneto-responsive composite surface, made by infiltrating a ferrofluid into a microstructured matrix (termed ferrofluid-containing liquid-infused porous surfaces, or FLIPS). We demonstrate various topographical reconfigurations at multiple length scales and a broad range of associated emergent behaviours. An applied magnetic-field gradient induces the movement of magnetic nanoparticles suspended in the ferrofluid, which leads to microscale flow of the ferrofluid first above and then within the microstructured surface. This redistribution changes the initially smooth surface of the ferrofluid (which is immobilized by the porous matrix through capillary forces) into various multiscale hierarchical topographies shaped by the size, arrangement and orientation of the confining microstructures in the magnetic field. We analyse the spatial and temporal dynamics of these reconfigurations theoretically and experimentally as a function of the balance between capillary and magnetic pressures15-19 and of the geometric anisotropy of the FLIPS system. Several interesting functions at three different length scales are demonstrated: self-assembly of colloidal particles at the micrometre scale; regulated flow of liquid droplets at the millimetre scale; and switchable adhesion and friction, liquid pumping and removal of biofilms at the centimetre scale. We envision that FLIPS could be used as part of integrated control systems for the manipulation and transport of matter, thermal management, microfluidics and fouling-release materials.
RESUMO
Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to â¼75 fM level (10(-15) molâ L(-1)). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10(-18) molâ L(-1)) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security.
RESUMO
Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and transportation, optical sensing, medicine, and as self-cleaning and anti-fouling materials operating in extreme environments.
Assuntos
Materiais Biomiméticos/química , Lubrificantes/química , Magnoliopsida/química , Pressão , Propriedades de Superfície , Molhabilidade , Animais , Formigas/fisiologia , Sangue , Hidrocarbonetos/química , Gelo , Lotus/anatomia & histologia , Lotus/química , Lubrificantes/farmacologia , Lubrificação , Magnoliopsida/anatomia & histologia , Nanoestruturas , Petróleo , Porosidade , Propriedades de Superfície/efeitos dos fármacos , Água/químicaRESUMO
Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of antimicrobial treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters or implants, frequently impossible. At the same time, strategies for biofilm prevention based on surface chemistry treatments or surface microstructure have been found to only transiently affect initial attachment. Here we report that Slippery Liquid-Infused Porous Surfaces (SLIPS) prevent 99.6% of Pseudomonas aeruginosa biofilm attachment over a 7-d period, as well as Staphylococcus aureus (97.2%) and Escherichia coli (96%), under both static and physiologically realistic flow conditions. In contrast, both polytetrafluoroethylene and a range of nanostructured superhydrophobic surfaces accumulate biofilm within hours. SLIPS show approximately 35 times the reduction of attached biofilm versus best case scenario, state-of-the-art PEGylated surface, and over a far longer timeframe. We screen for and exclude as a factor cytotoxicity of the SLIPS liquid, a fluorinated oil immobilized on a structured substrate. The inability of biofilm to firmly attach to the surface and its effective removal under mild flow conditions (about 1 cm/s) are a result of the unique, nonadhesive, "slippery" character of the smooth liquid interface, which does not degrade over the experimental timeframe. We show that SLIPS-based antibiofilm surfaces are stable in submerged, extreme pH, salinity, and UV environments. They are low-cost, passive, simple to manufacture, and can be formed on arbitrary surfaces. We anticipate that our findings will enable a broad range of antibiofilm solutions in the clinical, industrial, and consumer spaces.
Assuntos
Incrustação Biológica/prevenção & controle , Soluções/química , Biofilmes/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Politetrafluoretileno/farmacologia , Porosidade/efeitos dos fármacos , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Propriedades de Superfície/efeitos dos fármacosRESUMO
Materials that adapt dynamically to environmental changes are currently limited to two-state switching of single properties, and only a small number of strategies that may lead to materials with continuously adjustable characteristics have been reported. Here we introduce adaptive surfaces made of a liquid film supported by a nanoporous elastic substrate. As the substrate deforms, the liquid flows within the pores, causing the smooth and defect-free surface to roughen through a continuous range of topographies. We show that a graded mechanical stimulus can be directly translated into finely tuned, dynamic adjustments of optical transparency and wettability. In particular, we demonstrate simultaneous control of the film's transparency and its ability to continuously manipulate various low-surface-tension droplets from free-sliding to pinned. This strategy should make possible the rational design of tunable, multifunctional adaptive materials for a broad range of applications.
Assuntos
Nanoestruturas/química , Óptica e Fotônica , Porosidade , Propriedades de Superfície , Resistência à Tração , MolhabilidadeRESUMO
The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.
RESUMO
By reducing the reflection of ultraviolet light, hollow nanoparticles called brochosomes help to protect leafhoppers from predators.
Assuntos
Hemípteros , Nanopartículas , Comportamento Predatório , Animais , Hemípteros/fisiologia , Nanopartículas/química , Raios Ultravioleta , Insetos/fisiologiaRESUMO
Microscale thermal signature control using incoherent heat sources remains challenging, despite recent advancements in plasmonic materials and phase-change materials. Inspired by leafhopper-generated brochosomes, we design binary metastructures functioning as pixel twins to achieve pixelated thermal signature control at the microscale. In the infrared range, the pixel twins exhibit distinct emissivities, creating thermal counterparts of "0-1" binary states for storing and displaying information. In the visible range, the engineered surface morphology of the pixel twins ensures similar scattering behaviors. This renders them visually indistinguishable, thereby concealing the stored information. The brochosome-like pixel twins are self-emitting when thermally excited. Their structure-enabled functions do not rely on the permittivities of specific materials, which distinguishes them from the conventional laser-illuminated plasmonic holographic metasurfaces. The unique combination of visible camouflage and infrared display offers a systemic solution to microscale spatial control of thermal signatures and has substantial implications for optical security, anticounterfeiting, and data encryption.
RESUMO
The coffee ring phenomenon has long been known for its ability to concentrate particles at the rim of a dried liquid droplet, yet little is known about its particle separation capability. Here, we elucidate the physics of particle separation during coffee ring formation, which is based on a particle-size selection mechanism near the contact line of an evaporating droplet. On the basis of this mechanism, we demonstrate nanochromatography of three relevant biological entities (proteins, micro-organisms, and mammalian cells) in a liquid droplet, with a separation resolution on the order of â¼100 nm and a dynamic range from â¼10 nm to a few tens of micrometers. These findings have direct implications for developing low-cost technologies for disease diagnostics in resource-poor environments.
Assuntos
Cromatografia/métodos , Café , Nanotecnologia/métodos , Animais , Linhagem Celular Tumoral , Separação Celular , Escherichia coli/isolamento & purificação , Imunoglobulina G/isolamento & purificação , Linfoma de Células B/patologia , Camundongos , Tamanho da PartículaRESUMO
Many natural surfaces are capable of rapidly shedding water droplets-a phenomenon that has been attributed to the presence of low solid fraction textures (Φs ~ 0.01). However, recent observations revealed the presence of unusually high solid fraction nanoscale textures (Φs ~ 0.25 to 0.64) on water-repellent insect surfaces, which cannot be explained by existing wetting theories. Here, we show that the contact time of bouncing droplets on high solid fraction surfaces can be reduced by reducing the texture size to ~100 nm. We demonstrated that the texture size-dependent contact time reduction could be attributed to the dominance of line tension on nanotextures and that compact arrangement of nanotextures is essential to withstand the impact pressure of raindrops. Our findings illustrate a potential survival strategy of insects to rapidly shed impacting raindrops, and suggest a previously unidentified design principle to engineering robust water-repellent materials for applications including miniaturized drones.
RESUMO
Urinary stone disease is among the most common medical conditions. Standard evaluation of urinary stone disease involves a metabolic workup of stone formers based on measurement of minerals and solutes excreted in 24-hour urine samples. Nevertheless, 24-hour urine testing is slow, expensive, and inconvenient for patients, which has hindered widespread adoption in clinical practice. Here, we demonstrate SLIPS-LAB (Slippery Liquid-Infused Porous Surface Laboratory), a droplet-based bioanalysis system, for rapid measurement of urinary stone-associated analytes. The ultra-repellent and antifouling properties of SLIPS, which is a biologically inspired surface technology, allow autonomous liquid handling and manipulation of physiological samples without complicated sample preparation procedures and supporting equipment. We pilot a study that examines key urinary analytes in clinical samples from patients with urinary stone. The simplicity and speed of SLIPS-LAB hold the potential to provide actionable diagnostic information for patients with urinary stone disease and rapid feedback for responses to dietary and pharmacologic treatments.
Assuntos
Cálculos Urinários , Humanos , Cálculos Urinários/diagnóstico , Cálculos Urinários/urinaRESUMO
The hydrophobicity of a surface can be enhanced by physical textures. However, no existing theories of surface wetting can provide guidance to pinpoint the texture size requirement to achieve super/ultrahydrophobicity. Here, we show that the three-phase contact line tension, tau, is an important link to understand the dependence of macroscopic wetting on physical texture size in an ideal Cassie regime. Specifically, we show that texture size is the dominant parameter in determining surface hydrophobicity when the size approaches a limiting physical length scale, as defined by tau and the surface tension of the liquid.
Assuntos
Modelos Químicos , Nanotecnologia/métodos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Água/química , MolhabilidadeRESUMO
Separation of substances is central to many industrial and medical processes ranging from wastewater treatment and purification to medical diagnostics. Conventional solid-based membranes allow particles below a critical size to pass through a membrane pore while inhibiting the passage of particles larger than that critical size; membranes that are capable of showing reversed behavior, that is, the passage of large particles and inhibition of small ones, are unusual in conventional engineering applications. Inspired by endocytosis and the self-healing properties of liquids, we show that free-standing membranes composed entirely of liquid can be designed to retain particles smaller than a critical size given the particle inertial properties. We further demonstrate that these membranes can be used for previously unachievable applications, including serving as particle barriers that allow macroscopic device access through the membrane (for example, open surgery) or as selective membranes inhibiting gas/vapor passage while allowing solids to pass through them (for example, waste/odor management).
RESUMO
Multifunctional surfaces that are favorable for both droplet nucleation and removal are highly desirable for water harvesting applications but are rare. Inspired by the unique functions of pitcher plants and rice leaves, we present a hydrophilic directional slippery rough surface (SRS) that is capable of rapidly nucleating and removing water droplets. Our surfaces consist of nanotextured directional microgrooves in which the nanotextures alone are infused with hydrophilic liquid lubricant. We have shown through molecular dynamics simulations that the physical origin of the efficient droplet nucleation is attributed to the hydrophilic surface functional groups, whereas the rapid droplet removal is due to the significantly reduced droplet pinning of the directional surface structures and slippery interface. We have further demonstrated that the SRS, owing to its large surface area, hydrophilic slippery interface, and directional liquid repellency, outperforms conventional liquid-repellent surfaces in water harvesting applications.
RESUMO
Protocols to fabricate high aspect-ratio biologically-based nanostructures using a top-down fabricated polymer platform and surface-initiated actin polymerization were developed.
RESUMO
A switchable cross-species liquid-repellent surface is developed that can rapidly switch between two distinct liquid-repellent modes: i) the superhydrophobic mode, modeled after lotus leaves, and ii) the slippery mode, modeled after the pitcher-plant peristome. Adaptive liquid repellency and programmable fog harvesting are demonstrated as application examples for the new switchable surface.
RESUMO
Since the early discovery of the antireflection properties of insect compound eyes, new examples of natural antireflective coatings have been rare. Here, we report the fabrication and optical characterization of a biologically inspired antireflective surface that emulates the intricate surface architectures of leafhopper-produced brochosomes-soccer ball-like microscale granules with nanoscale indentations. Our method utilizes double-layer colloidal crystal templates in conjunction with site-specific electrochemical growth to create these structures, and is compatible with various materials including metals, metal oxides, and conductive polymers. These brochosome coatings (BCs) can be designed to exhibit strong omnidirectional antireflective performance of wavelengths from 250 to 2000 nm, comparable to the state-of-the-art antireflective coatings. Our results provide evidence for the use of brochosomes as a camouflage coating against predators of leafhoppers or their eggs. The discovery of the antireflective function of BCs may find applications in solar energy harvesting, imaging, and sensing devices.
Assuntos
Materiais Biomiméticos/síntese química , Animais , Mimetismo Biológico , Materiais Biomiméticos/química , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Coloides , Cristalização , Hemípteros/química , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Processos Fotoquímicos , Propriedades de SuperfícieRESUMO
Inspired by the wax regeneration ability of plant leaves and the slippery surfaces of the Nepenthes pitcher plants, we have developed a new form of cross-species bioinspired slippery liquid-infused porous surfaces (X-SLIPS) that can self-repair under thermal stimulation even under large-area physical and chemical damage. The performance and underlying mechanism of the thermal-healing property has been studied and characterized in detail. These thermally self-healing omniphobic coatings can be applied to a broad range of metals, plastics, glass, and ceramics of various shapes and show excellent repellency toward aqueous and organic liquids.