Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 23(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518152

RESUMO

A phytochemical investigation of the roots of Aspilia plurisetaled to the isolation of ent-kaurane-type diterpenoids and additional phytochemicals (1⁻23). The structures of the isolated compounds were elucidated based on Nuclear Magnetic Resonance (NMR) spectroscopic and mass spectrometric analyses. The absolute configurations of seven of the ent-kaurane-type diterpenoids (3⁻6, 6b, 7 and 8) were determined by single crystal X-ray diffraction studies. Eleven of the compounds were also isolated from the roots and the aerial parts of Aspilia mossambicensis. The literature NMR assignments for compounds 1 and 5 were revised. In a cytotoxicity assay, 12α-methoxy-ent-kaur-9(11),16-dien-19-oic acid (1) (IC50 = 27.3 ± 1.9 µM) and 9ß-hydroxy-15α-angeloyloxy-ent-kaur-16-en-19-oic acid (3) (IC50 = 24.7 ± 2.8 µM) were the most cytotoxic against the hepatocellular carcinoma (Hep-G2) cell line, while 15α-angeloyloxy-16ß,17-epoxy-ent-kauran-19-oic acid (5) (IC50 = 30.7 ± 1.7 µM) was the most cytotoxic against adenocarcinomic human alveolar basal epithelial (A549) cells.


Assuntos
Asteraceae/química , Sobrevivência Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Células A549 , Adenocarcinoma Bronquioloalveolar/tratamento farmacológico , Adenocarcinoma Bronquioloalveolar/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Diterpenos do Tipo Caurano/isolamento & purificação , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Estrutura Molecular , Componentes Aéreos da Planta/química , Raízes de Plantas/química
2.
Molecules ; 22(9)2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28891957

RESUMO

Four new flavones with modified prenyl groups, namely (E)-5-hydroxytephrostachin (1), purleptone (2), (E)-5-hydroxyanhydrotephrostachin (3), and terpurlepflavone (4), along with seven known compounds (5-11), were isolated from the CH2Cl2/MeOH (1:1) extract of the stem of Tephrosia purpurea subsp. leptostachya, a widely used medicinal plant. Their structures were elucidated on the basis of NMR spectroscopic and mass spectrometric evidence. Some of the isolated compounds showed antiplasmodial activity against the chloroquine-sensitive D6 strains of Plasmodium falciparum, with (E)-5-hydroxytephrostachin (1) being the most active, IC50 1.7 ± 0.1 µM, with relatively low cytotoxicity, IC50 > 21 µM, against four cell-lines.


Assuntos
Antimaláricos/isolamento & purificação , Flavonas/isolamento & purificação , Caules de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Tephrosia/química , Células A549 , Antimaláricos/química , Antimaláricos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cloroquina/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Flavonas/química , Flavonas/farmacologia , Células Hep G2 , Humanos , Especificidade de Órgãos , Extratos Vegetais/química , Plantas Medicinais , Plasmodium falciparum/crescimento & desenvolvimento , Relação Estrutura-Atividade
3.
Phytomedicine ; 94: 153826, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775358

RESUMO

BACKGROUND: Prostate cancer (PCa) is the most prominent malignancy among men worldwide. PCa cells have a high tendency to metastasize to various distant organs, and this activity is the main cause of PCa mortality. Nimbolide is a promising phytochemical constituent of neem Azadirachta indica (Meliaceae). Previous studies showed that nimbolide exhibited potent anticancer activity however, its role against PCa tumorigenesis has not been fully elucidated. PURPOSE: Our work aims to explore the role of nimbolide in regulating the essential tumor-associated processes involved in the metastatic cascade in PCa cells. STUDY DESIGN: Cytotoxicity assay, wound healing and spheroid invasion assays, western blotting, immunofluorescence, tube-formation assay, in vivo and immunohistochemistry. METHODS: The cytotoxicity of nimbolide towards PCa cell lines was assessed by resazurin assays. The cell mobility and migration of nimbolide-treated DU145 cells were determined by wound healing and spheroid invasion assays. Tubulin network was visualized using U2OS cells and DU145 cells. The effect of nimbolide on E-cadherin, ß-catenin, acetylated α-tubulin and HDAC6 protein expressions levels were measured by Western blot. The potentiality of nimbolide to inhibit angiogenesis was revealed by HUVEC tube-formation assay. Nimbolide antitumor effect was studied in a syngeneic model of murine prostate cancer. RESULTS: The current study indicated that nimbolide negatively affected the migratory and invasive capacity of DU145 prostate cancer cells in 2D and three-dimensional (3D) spheroid cultures. Interestingly, nimbolide induced downregulation of E-cadherin without any influence on the expression level of ß-catenin. Additionally, we demonstrated that nimbolide influenced the microtubule network which was supported by the upregulation of acetylated α-tubulin and the reduction in HDAC6 protein. Moreover, the inhibitory effect of nimbolide on angiogenesis was clearly observed in HUVEC tube formation assay. In vivo experiments revealed the significant suppression of PCa growth and targeting of the B-RAF/p.ERK signaling pathway by nimbolide. CONCLUSION: Our results showed that nimbolide inhibited 2D and 3D prostate cancer cells migration and downregulated E-cadherin protein expression, a marker for metastatic chemoresistance and tumor recurrence. Nimbolide stabilized the microtubules, combated angiogenesis and suppressed B.RAF/ERK-mediated in vivo tumor growth. Nimbolide may be considered as potential therapeutic agent for metastatic and advanced PCa patients and merits further investigations.


Assuntos
Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Limoninas , Masculino , Camundongos , Microtúbulos , Neoplasias da Próstata/tratamento farmacológico
4.
Nat Prod Res ; 36(11): 2758-2766, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34000936

RESUMO

Extracts from Securidaca longipedunculata showed antiplasmodial activities against reference clones and clinical isolates using SYBR Green I method. A new benzophenone, 2,3,4,5-tetramethoxybenzophenone (1) was isolated and characterized along with seven known compounds: 4-hydroxy-2,3-dimethoxybenzophenone (2); 3-hydroxy-5-methoxybiphenyl (3), methyl-2-hydroxy-6-methoxybenzoate (4), benzyl-2-hydroxy-6-methoxybenzoate (5), 2-hydroxy-6-methoxybenzoic acid (6), 2,4,5-trimethoxybenzophenone (7) and 2-methoxy-3,4-methylenedioxybenzophenone (8). Compounds 1 and 2 showed ex vivo antiplasmodial activities (IC50 28.8 µM and 18.6 µM, respectively); while 5 and 8 showed in vivo activities (IC50 19.7 µM and 14.5 µM, respectively) against D6 strain. In a cytotoxicity assay, all the extracts (with an exception of the MeOH extract of the leaves) and pure compounds were not toxic to the normal LO2 and BEAS cell-lines, while the methanol roots extract (IC50 66.4 µg/mL against A549, and 77.4 µg/mL against HepG2), compounds 6 (IC50 22.2 µM against A549) and 7 (IC50 45.2 µM against HepG2) were weakly active against cancerous cell-lines.


Assuntos
Antimaláricos , Polygalaceae , Securidaca , Antimaláricos/farmacologia , Benzofenonas/farmacologia , Éteres de Hidroxibenzoatos , Extratos Vegetais/farmacologia , Plasmodium falciparum
5.
Fitoterapia ; 149: 104796, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33271256

RESUMO

Five known compounds (1-5) were isolated from the extract of Mundulea sericea leaves. Similar investigation of the roots of this plant afforded an additional three known compounds (6-8). The structures were elucidated using NMR spectroscopic and mass spectrometric analyses. The absolute configuration of 1 was established using ECD spectroscopy. In an antiplasmodial activity assay, compound 1 showed good activity with an IC50 of 2.0 µM against chloroquine-resistant W2, and 6.6 µM against the chloroquine-sensitive 3D7 strains of Plasmodium falciparum. Some of the compounds were also tested for antileishmanial activity. Dehydrolupinifolinol (2) and sericetin (5) were active against drug-sensitive Leishmania donovani (MHOM/IN/83/AG83) with IC50 values of 9.0 and 5.0 µM, respectively. In a cytotoxicity assay, lupinifolin (3) showed significant activity on BEAS-2B (IC50 4.9 µM) and HePG2 (IC50 10.8 µM) human cell lines. All the other compounds showed low cytotoxicity (IC50 > 30 µM) against human lung adenocarcinoma cells (A549), human liver cancer cells (HepG2), lung/bronchus cells (epithelial virus transformed) (BEAS-2B) and immortal human hepatocytes (LO2).


Assuntos
Antimaláricos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antiprotozoários/farmacologia , Fabaceae/química , Antimaláricos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Antiprotozoários/isolamento & purificação , Linhagem Celular Tumoral , Flavonoides , Humanos , Quênia , Estrutura Molecular , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Plasmodium falciparum/efeitos dos fármacos
6.
Acta Pharm Sin B ; 9(5): 1021-1034, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31649851

RESUMO

Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest-a phenomenon known as mitotic catastrophe, which is followed by immediate cell death via apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in vivo in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.

7.
Front Pharmacol ; 9: 710, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018557

RESUMO

Adenosine 5'-monophsphate-activated protein kinase (AMPK) is a crucial energy sensor for maintaining cellular homeostasis. Targeting AMPK may provide an alternative approach in treatment of various diseases like cancer, diabetes, and neurodegenerations. Accordingly, novel AMPK activators are frequently identified from natural products in recent years. However, most of such AMPK activators are interacting with AMPK in an indirect manner, which may cause off-target effects. Therefore, the search of novel direct AMPK modulators is inevitable and effective screening methods are needed. In this report, a rapid and straightforward method combining the use of in silico and in vitro techniques was established for selecting and categorizing huge amount of compounds from chemical library for targeting AMPK modulators. A new class of direct AMPK modulator have been discovered which are anilides or anilide-like compounds. In total 1,360,000 compounds were virtually screened and 17 compounds were selected after biological assays. Lipinski's rule of five assessment suggested that, 13 out of the 17 compounds are demonstrating optimal bioavailability. Proton acceptors constituting the structure of these compounds and hydrogen bonds with AMPK in the binding site appeared to be the important factors determining the efficacy of these compounds.

8.
Front Pharmacol ; 8: 238, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529482

RESUMO

Neferine, a bisbenzylisoquinoline alkaloid isolated from the green seed embryos of Lotus (Nelumbo nucifera Gaertn), has been previously shown to have various anti-cancer effects. In the present study, we evaluated the effect of neferine in terms of P-glycoprotein (P-gp) inhibition via in vitro cytotoxicity assays, R123 uptake assays in drug-resistant cancer cells, in silico molecular docking analysis on human P-gp and in silico absorption, distribution, metabolism, and excretion (ADME), quantitative structure activity relationships (QSAR) and toxicity analyses. Lipinski rule of five were mainly considered for the ADME evaluation and the preset descriptors including number of hydrogen bond donor, acceptor, hERG IC50, logp, logD were considered for the QSAR analyses. Neferine revealed higher toxicity toward paclitaxel- and doxorubicin-resistant breast, lung or colon cancer cells, implying collateral sensitivity of these cells toward neferine. Increased R123 uptake was observed in a comparable manner to the control P-gp inhibitor, verapamil. Molecular docking analyses revealed that neferine still interacts with P-gp, even if R123 was pre-bound. Bioinformatical ADME and toxicity analyses revealed that neferine possesses the druggability parameters with no predicted toxicity. In conclusion, neferine may allocate the P-gp drug-binding pocket and prevent R123 binding in agreement with P-gp inhibition experiments, where neferine increased R123 uptake.

9.
Front Pharmacol ; 8: 962, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29358919

RESUMO

Rheumatoid arthritis synovial fibroblasts (RASFs) are fundamental effector cells in RA driving the joint inflammation and deformities. Celastrol is a natural compound that exhibits a potent anti-arthritic effect promoting endoplasmic reticulum (ER) stress mediated by intracellular calcium (Ca2+) mobilization. Ca2+ is a second messenger regulating a variety of cellular processes. We hypothesized that the compound, celastrol, affecting cytosolic Ca2+ mobilization could serve as a novel strategy to combat RA. To address this issue, celastrol was used as a molecular tool to assay the inflammatory gene expression profile regulated by Ca2+. We confirmed that celastrol treatment mobilized cytosolic Ca2+ in patient-derived RASFs. It was found that 23 genes out of 370 were manipulated by Ca2+ mobilization using an inflammatory and autoimmunity PCR array following independent quantitative PCR validation. Most of the identified genes were downregulated and categorized into five groups corresponding to their cellular responses participating in RA pathogenesis. Accordingly, a signaling network map demonstrating the possible molecular circuitry connecting the functions of the products of these genes was generated based on literature review. In addition, a bioinformatics analysis revealed that celastrol-induced Ca2+ mobilization gene expression profile showed a novel mode of action compared with three FDA-approved rheumatic drugs (methotrexate, rituximab and tocilizumab). To the best of our knowledge, this is a pioneer work charting the Ca2+ signaling network on the regulation of RA-associated inflammatory gene expression.

10.
Front Pharmacol ; 8: 388, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670281

RESUMO

Resistance of cancer cells to chemotherapy remains a significant problem in oncology. Mechanisms regulating programmed cell death, including apoptosis, autophagy or necrosis, in the treatment of cancers have been extensively investigated over the last few decades. Autophagy is now emerging as an important pathway in regulating cell death or survival in cancer therapy. Recent studies demonstrated variety of natural small-molecules could induce autophagic cell death in apoptosis-resistant cancer cells, therefore, discovery of novel autophagic enhancers from natural products could be a promising strategy for treatment of chemotherapy-resistant cancer. By computational virtual docking analysis, biochemical assays, and advanced live-cell imaging techniques, we have identified N-desmethyldauricine (LP-4), isolated from rhizoma of Menispermum dauricum DC as a novel inducer of autophagy. LP-4 was shown to induce autophagy via the Ulk-1-PERK and Ca2+/Calmodulin-dependent protein kinase kinase ß (CaMKKß)-AMPK-mTOR signaling cascades, via mobilizing calcium release through inhibition of SERCA, and importantly, lead to autophagic cell death in a panel of cancer cells, apoptosis-defective and apoptosis-resistant cells. Taken together, this study provides detailed insights into the cytotoxic mechanism of a novel autophagic compound that targeting the apoptosis resistant cancer cells, and new implication on drug discovery from natural products for drug resistant cancer therapy.

11.
Clin Cancer Res ; 11(16): 6002-11, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16115945

RESUMO

PURPOSE: Pseudolaric acid B (PAB) is the major bioactive constituent in the root bark of Pseudolarix kaempferi that has been used as an antifungal remedy in traditional Chinese medicine. Previous studies showed that PAB exhibited substantial cytotoxicity. The aims of this study were to elucidate the molecular target of PAB, to examine its mechanism of action, and to evaluate the efficacy of this compound in vivo. EXPERIMENTAL DESIGN: The effect of PAB on cell growth inhibition toward a panel of cancer cell lines was assayed. Cell cycle analysis, Western blotting, immunocytochemistry, and apoptosis analysis were carried out to examine the mechanism of action. Tubulin polymerization assays were conducted to examine the interaction between PAB and tubulin. A P-glycoprotein-overexpressing cell line was used to evaluate the efficacy of PAB toward multidrug-resistant phenotypes. In vivo efficacy of PAB was evaluated by the murine xenograft model. RESULTS: PAB induces cell cycle arrest at G2-M transition, leading to apoptosis. The drug disrupts cellular microtubule networks and inhibits the formation of mitotic spindles. Polymerization of purified bovine brain tubulin was dose-dependently inhibited by PAB. Furthermore, PAB circumvents the multidrug resistance mechanism, displaying notable potency also in P-glycoprotein-overexpressing cells. Finally, we showed that PAB is effective in inhibiting tumor growth in vivo. CONCLUSIONS: We identified the microtubules as the molecular target of PAB. Furthermore, we showed that PAB circumvents P-glycoprotein overexpression-induced drug resistance and is effective in inhibiting tumor growth in vivo. Our work will facilitate the future development of PAB as a cancer therapeutic.


Assuntos
Diterpenos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colchicina/farmacologia , Diterpenos/química , Diterpenos/uso terapêutico , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas , Fase G2/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Microtúbulos/metabolismo , Estrutura Molecular , Fatores de Tempo , Resultado do Tratamento , Tubulina (Proteína)/metabolismo
12.
ChemMedChem ; 2(10): 1464-79, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17768731

RESUMO

As the clinically used artemisinins do not withstand the thermal stress testing required to evaluate shelf life for storage in tropical countries where malaria is prevalent, there is a need to develop thermally more robust artemisinin derivatives. Herein we describe the attachment of electron-withdrawing arene- and alkanesulfonyl and -carbonyl groups to the nitrogen atom of the readily accessible Ziffer 11-azaartemisinin to provide the corresponding N-sulfonyl- and -carbonylazaartemisinins. Two acylurea analogues were also prepared by treatment of the 11-azaartemisinin with arylisocyanates. Several of the N-sulfonylazaartemisinins have melting points above 200 degrees C and possess substantially greater thermal stabilities than the artemisinins in current clinical use, with the antimalarial activities of several of the arylsulfonyl derivatives being similar to that of artesunate against the drug-sensitive 3D7 clone of the NF54 isolate and the multidrug-resistant K1 strain of P. falciparum. The compounds possess relatively low cytotoxicities. The carbonyl derivatives are less crystalline than the N-sulfonyl derivatives, but are generally more active as antimalarials. The N-nitroarylcarbonyl and arylurea derivatives possess sub-ng ml(-1) activities. Although several of the azaartemisinins possess log P values below 3.5, the compounds have poor aqueous solubility (<1 mg L(-1) at pH 7). The greatly enhanced thermal stability of our artemisinins suggests that strategic incorporation of electron-withdrawing polar groups into both new artemisinin derivatives and totally synthetic trioxanes or trioxolanes may assist in the generation of practical new antimalarial drugs which will be stable to storage conditions in the field, while retaining favorable physicochemical properties.


Assuntos
Antimaláricos/síntese química , Artemisininas/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Temperatura Alta , Solubilidade
13.
Bioorg Med Chem Lett ; 14(13): 3507-11, 2004 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15177462

RESUMO

Lipid accumulation in nonadipose tissues is increasingly linked to the development of type 2 diabetes in obese individuals. We report here the design, synthesis, and evaluation of a series of novel PPARalpha selective activators containing 1,3-dicarbonyl moieties. Structure-activity relationship studies led to the identification of PPARalpha selective activators (compounds 10, 14, 17, 18, and 21) with stronger potency and efficacy to activate PPARalpha over PPARgamma and PPARdelta. Experiments in vivo showed that compounds 10, 14, and 17 had blood glucose lowering effect in diabetic db/db mouse model after two weeks oral dosing. The data strongly support further testing of these lead compounds in other relevant disease animal models to evaluate their potential therapeutic benefits.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipolipemiantes/síntese química , Cetonas/síntese química , PPAR alfa/agonistas , Tecido Adiposo/metabolismo , Administração Oral , Aldeídos/síntese química , Aldeídos/farmacologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Desenho de Fármacos , Hipolipemiantes/farmacologia , Cetonas/farmacologia , Metabolismo dos Lipídeos , Camundongos , PPAR alfa/metabolismo , PPAR delta/metabolismo , PPAR gama/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA