RESUMO
The RAS-ERK/MAPK (RAS-extracellular signal-regulated kinase/mitogen-activated protein kinase) pathway integrates growth-promoting signals to stimulate cell growth and proliferation, at least in part, through alterations in metabolic gene expression. However, examples of direct and rapid regulation of the metabolic pathways by the RAS-ERK pathway remain elusive. We find that physiological and oncogenic ERK signaling activation leads to acute metabolic flux stimulation through the de novo purine synthesis pathway, thereby increasing building block availability for RNA and DNA synthesis, which is required for cell growth and proliferation. We demonstrate that ERK2, but not ERK1, phosphorylates the purine synthesis enzyme PFAS (phosphoribosylformylglycinamidine synthase) at T619 in cells to stimulate de novo purine synthesis. The expression of nonphosphorylatable PFAS (T619A) decreases purine synthesis, RAS-dependent cancer cell-colony formation, and tumor growth. Thus, ERK2-mediated PFAS phosphorylation facilitates the increase in nucleic acid synthesis required for anabolic cell growth and proliferation.
Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Purinas/biossíntese , Células A549 , Animais , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fosforilação , Purinas/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismoRESUMO
Notch1 is required to generate the earliest embryonic hematopoietic stem cells (HSCs); however since Notch-deficient embryos die early in gestation, additional functions for Notch in embryonic HSC biology have not been described. We used two complementary genetic models to address this important biological question. Unlike Notch1-deficient mice, mice lacking the conserved Notch1 transcriptional activation domain (TAD) show attenuated Notch1 function in vivo and survive until late gestation, succumbing to multiple cardiac abnormalities. Notch1 TAD-deficient HSCs emerge and successfully migrate to the fetal liver but are decreased in frequency by embryonic day 14.5. In addition, TAD-deficient fetal liver HSCs fail to compete with wild-type HSCs in bone marrow transplant experiments. This phenotype is independently recapitulated by conditional knockout of Rbpj, a core Notch pathway component. In vitro analysis of Notch1 TAD-deficient cells shows that the Notch1 TAD is important to properly assemble the Notch1/Rbpj/Maml trimolecular transcription complex. Together, these studies reveal an essential role for the Notch1 TAD in fetal development and identify important cell-autonomous functions for Notch1 signaling in fetal HSC homeostasis.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Células-Tronco Fetais , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Mutação , Estrutura Terciária de Proteína/genética , Receptor Notch1/genética , Análise de SobrevidaRESUMO
We describe here a novel transgenic zebrafish, Tg(zpc:G4VP16/UAS:nfsB-mCherry) that effectively demonstrates the targeted oocyte ablation in the adult zebrafish ovary. This transgenic line expresses bacterial nitroreductase enzyme (nfsB) under the control of the oocyte-specific zona pellucida C (zpc) gene promoter. Adult transgenic females exposed to the prodrug metronidazole demonstrated near-complete ablation of growing oocytes, resulting in ovarian degeneration and complete cessation of reproductive function. Within 4 weeks of prodrug removal, treated fish demonstrated complete anatomical regeneration of the ovary and, within 7 weeks, ovarian function (fertility) was fully restored. Together, these results demonstrate functional renewal of the oocyte pool in the adult zebrafish ovary. Accordingly, this transgenic zebrafish model system provides a novel means to investigate ovarian growth dynamics in a genetically tractable vertebrate, and may be useful for evaluating signaling interactions that regulate gonadal development processes such as de novo oogenesis.
Assuntos
Animais Geneticamente Modificados , Modelos Animais , Oócitos/fisiologia , Oogênese/fisiologia , Peixe-Zebra/fisiologia , Animais , Anti-Infecciosos/farmacologia , Feminino , Masculino , Metronidazol/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Ovário/anatomia & histologia , Ovário/efeitos dos fármacos , Ovário/patologia , Pró-Fármacos/farmacologia , Transdução de Sinais/fisiologia , Peixe-Zebra/anatomia & histologiaRESUMO
In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway.
Assuntos
Proteínas de Transporte/biossíntese , Ciclinas/biossíntese , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sistema Nervoso/embriologia , Neurogênese/fisiologia , Fosfoproteínas/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Apoptose/fisiologia , Proteínas de Transporte/genética , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Ciclinas/genética , Embrião não Mamífero/citologia , Sistema Nervoso/citologia , Fosfoproteínas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
The ability to reproduce scientific findings is foundational in research; yet, it is compromised in part by poorly characterized reagents, including antibodies. In this report, we describe the application of complementary validation strategies tailored for use in immunohistochemical assays in the characterization of rabbit monoclonal antibodies against YAP and TAZ, homologous and sequentially similar transcriptional effectors of the Hippo signaling pathway. A lack of antibody reagents rigorously validated for immunohistochemistry has limited the Hippo signaling research community's ability to interrogate YAP and TAZ independently in tissue. In a series of normal and diseased human tissues, we were able to demonstrate differential expression patterns of YAP and TAZ, suggesting the potential for functional differences of these proteins. These differences can now be studied in greater detail with these highly validated tools.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anticorpos Monoclonais/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Humanos , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
Erythroid cell formation critically depends on signals transduced via erythropoietin (EPO)/EPO receptor (EPOR)/JAK2 complexes. This includes not only core response modules (e.g., JAK2/STAT5, RAS/MEK/ERK), but also specialized effectors (e.g., erythroferrone, ASCT2 glutamine transport, Spi2A). By using phospho-proteomics and a human erythroblastic cell model, we identify 121 new EPO target proteins, together with their EPO-modulated domains and phosphosites. Gene ontology (GO) enrichment for "Molecular Function" identified adaptor proteins as one top EPO target category. This includes a novel EPOR/JAK2-coupled network of actin assemblage modifiers, with adaptors DLG-1, DLG-3, WAS, WASL, and CD2AP as prime components. "Cellular Component" GO analysis further identified 19 new EPO-modulated cytoskeletal targets including the erythroid cytoskeletal targets spectrin A, spectrin B, adducin 2, and glycophorin C. In each, EPO-induced phosphorylation occurred at pY sites and subdomains, which suggests coordinated regulation by EPO of the erythroid cytoskeleton. GO analysis of "Biological Processes" further revealed metabolic regulators as a likewise unexpected EPO target set. Targets included aldolase A, pyruvate dehydrogenase α1, and thioredoxin-interacting protein (TXNIP), with EPO-modulated p-Y sites in each occurring within functional subdomains. In TXNIP, EPO-induced phosphorylation occurred at novel p-T349 and p-S358 sites, and was paralleled by rapid increases in TXNIP levels. In UT7epo-E and primary human stem cell (HSC)-derived erythroid progenitor cells, lentivirus-mediated short hairpin RNA knockdown studies revealed novel pro-erythropoietic roles for TXNIP. Specifically, TXNIP's knockdown sharply inhibited c-KIT expression; compromised EPO dose-dependent erythroblast proliferation and survival; and delayed late-stage erythroblast formation. Overall, new insight is provided into EPO's diverse action mechanisms and TXNIP's contributions to EPO-dependent human erythropoiesis.
Assuntos
Eritropoese , Eritropoetina/metabolismo , Fosfoproteínas/metabolismo , Proteômica , Eritropoetina/genética , Humanos , Fosfoproteínas/genéticaRESUMO
IGF signaling has been shown to stimulate migration of multiple cell types in vitro, but few studies have confirmed an equivalent function for IGF signaling in vivo. We recently showed that suppression of IGF receptors in the zebrafish embryo disrupts primordial germ cell (PGC) migration, but the mechanism underlying these effects has not been elucidated. We hypothesized that PGCs are intrinsically dependent upon IGF signaling during the migratory phase of development. To test this hypothesis, we first examined the spatial expression patterns of IGF ligand genes (igf1, igf2a, and igf2b) in the zebrafish embryo. In situ analyses revealed distinct expression patterns for each IGF ligand gene, with igf2b mRNA expressed in a spatial pattern that correlates strongly with PGC migration. To determine whether PGC migration is responsive to IGF signaling in vivo, we synthesized gene hybrid expression constructs that permit conditional overexpression of IGF ligands by PGCs into the PGC microenvironment. Conditional overexpression of IGF ligands consistently disrupted PGC migration, confirming that PGC migration is sensitive to local aberrations in IGF signaling. Finally, we show that conditional suppression of IGF signaling, via PGC-specific overexpression of a mutant IGF-I receptor, disrupts PGC migration, confirming that zebrafish PGCs intrinsically require IGF signaling for directional migration in vivo. Collectively, these studies confirm an in vivo role for IGF signaling in cell migration and identify a candidate ligand gene (igf2b) regulating PGC migration in the zebrafish.
Assuntos
Células Germinativas/citologia , Transdução de Sinais/fisiologia , Somatomedinas/genética , Somatomedinas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/fisiologia , Ligantes , Modelos Animais , Comunicação Parácrina/fisiologia , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Peixe-Zebra/fisiologiaRESUMO
The insulin-like growth factor (IGF) system plays a central role in the neuroendocrine regulation of growth in all vertebrates. Evidence from studies in a variety of vertebrate species suggest that this growth factor complex, composed of ligands, receptors, and high-affinity binding proteins, evolved early during vertebrate evolution. Among nonmammalian vertebrates, IGF signaling has been studied most extensively in fish, particularly teleosts of commercial importance. The unique life history characteristics associated with their primarily aquatic existence has fortuitously led to the identification of novel functions of the IGF system that are not evident from studies in mammals and other tetrapod vertebrates. Furthermore, the emergence of the zebrafish as a preferred model for development genetics has spawned progress in determining the requirements for IGF signaling during vertebrate embryonic development. This review is intended as a summary of our understanding of IGF signaling, as revealed through research into the expression, function, and evolution of IGF ligands, receptors, and binding proteins in fish.
Assuntos
Peixes/fisiologia , Transdução de Sinais/fisiologia , Somatomedinas/fisiologia , Animais , Evolução Molecular , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/fisiologia , Ligantes , Receptores de Somatomedina/genética , Receptores de Somatomedina/fisiologia , Somatomedinas/genética , Peixe-Zebra/fisiologiaRESUMO
IGF binding protein-2 (IGFBP-2) is an evolutionarily conserved protein that binds IGFs and modulates their biological activities. Although the actions of IGFBP-2 have been well studied in vitro, we have a poor understanding of its in vivo functions, particularly during early development. Using the transparent zebrafish embryo as a model, we show that IGFBP-2 mRNA is expressed in lens epithelium and cranial boundary regions during early embryonic development and becomes localized to the liver by the completion of embryogenesis. Targeted knock-down of IGFBP-2 by antisense morpholino-modified oligonucleotides resulted in delayed development, reduced body growth, reduced IGF-I mRNA levels, and disruptions to cardiovascular development, including reduced blood cell number, reduced blood circulation, cardiac dysfunction, and brain ventricle edema. Detailed examination of vascular tissues, using a stable transgenic line of zebrafish expressing green fluorescent protein in vascular endothelial cells, revealed specific angiogenic (vessel sprouting) defects in IGFBP-2 knockdown embryos, with effects being localized in regions associated with IGFBP-2 mRNA expression. These findings suggest that IGFBP-2 is required for general embryonic development and growth and plays a local role in regulating vascular development in a model vertebrate organism.
Assuntos
Sistema Cardiovascular/embriologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Peixe-Zebra/embriologia , Animais , Anormalidades Cardiovasculares/genética , Regulação para Baixo , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Hematopoese/genética , Hematopoese/fisiologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Oligodesoxirribonucleotídeos Antissenso/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Peixe-Zebra/genéticaRESUMO
UNLABELLED: Regulatory pathways that drive early hematogenous dissemination of tumor cells are insufficiently defined. Here, we used the presence of disseminated tumor cells (DTC) in the bone marrow to define patients with early disseminated breast cancer and identified low retinoic acid-induced 2 (RAI2) expression to be significantly associated with DTC status. Low RAI2 expression was also shown to be an independent poor prognostic factor in 10 different cancer datasets. Depletion of RAI2 protein in luminal breast cancer cell lines resulted in dedifferentiation marked by downregulation of ERα, FOXA1, and GATA3, together with increased invasiveness and activation of AKT signaling. Functional analysis of the previously uncharacterized RAI2 protein revealed molecular interaction with CtBP transcriptional regulators and an overlapping function in controlling the expression of a number of key target genes involved in breast cancer. These results suggest that RAI2 is a new metastasis-associated protein that sustains differentiation of luminal breast epithelial cells. SIGNIFICANCE: We identified downregulation of RAI2 as a novel metastasis-associated genetic alteration especially associated with early occurring bone metastasis in ERα-positive breast tumors. We specified the role of the RAI2 protein to function as a transcriptional regulator that controls the expression of several key regulators of breast epithelial integrity and cancer.
Assuntos
Medula Óssea/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/patologia , Proteínas/genética , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Análise por Conglomerados , Proteínas de Ligação a DNA/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Alinhamento de Sequência , TranscriptomaRESUMO
IGF-II is the predominant IGF ligand regulating prenatal growth in all vertebrates, including humans, but its central role in placental development has confounded efforts to fully elucidate its functions within the embryo. Here we use a nonplacental model vertebrate (zebrafish) to interrogate the intraembryonic functions of IGF-II signaling. The zebrafish genome contains two coorthologs of mammalian IGF2 (igf2a, igf2b), which exhibit distinct patterns of expression during embryogenesis. Expression of igf2a mRNA is restricted to the notochord, primarily during segmentation/neurulation. By contrast, igf2b mRNA is expressed in midline tissues adjacent to the notochord, with additional sites of expression in the ventral forebrain, and the pronephros. To identify their intraembryonic functions, we suppressed the expression of each gene with morpholino oligonucleotides. Knockdown of igf2a led to defects in dorsal midline development, characterized by delayed segmentation, notochord undulations, and ventral curvature. Similarly, suppression of igf2b led to defects in dorsal midline development but also induced ectopic fusion of the nephron primordia, and defects in ventral forebrain development. Subsequent onset of severe body edema in igf2b, but not igf2a morphants, further suggested a distinct role for igf2b in development of the embryonic kidney. Simultaneous knockdown of both genes increased the severity of dorsal midline defects, confirming a conserved role for both genes in dorsal midline development. Collectively, these data provide evidence that the zebrafish orthologs of IGF2 function in dorsal midline development during segmentation/neurulation, whereas one paralog, igf2b, has evolved additional, distinct functions during subsequent organogenesis.
Assuntos
Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like II/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Fator de Crescimento Insulin-Like II/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologiaRESUMO
Cables 1, a cyclin-dependent kinase binding protein, is primarily involved in cell cycle regulation. Loss of nuclear Cables 1 expression is observed in human colon, lung and endometrial cancers. We previously reported that loss of nuclear Cables 1 expression was also observed with high frequency in a limited sample set of human ovarian carcinomas, although the mechanisms underlying loss of nuclear Cables 1 expression remained unknown. Our present objective was to examine Cables 1 expression in ovarian cancer in greater detail, and determine the predominant mechanisms of Cables 1 loss. We assessed potential genetic and epigenetic modifications of the Cables 1 locus through analyses of mutation, polymorphisms, loss of heterozygosity and DNA methylation. We observed a marked loss of nuclear Cables 1 expression in serous and endometrioid ovarian carcinomas that correlated with decreased Cables 1 mRNA levels. Although we detected no Cables 1 mutations, there was evidence of LOH at the Cables 1 locus and epigenetic modification of the Cables 1 promoter region in a subset of ovarian carcinomas and established cancer cell lines. From a functional perspective, over-expression of Cables 1 induced apoptosis, whereas, knockdown of Cables 1 negated this effect. Together these findings suggest that multiple mechanisms underlie the loss of Cables 1 expression in ovarian cancer cells, supporting the hypothesis that Cables 1 is a tumor suppressor in human ovarian cancer.
Assuntos
Proteínas de Transporte/genética , Ciclinas/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Perda de Heterozigosidade , Neoplasias Ovarianas/genética , Fosfoproteínas/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos Par 18 , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Proteínas Supressoras de TumorRESUMO
Insulin-like growth factor (IGF) signaling is a critical regulator of somatic growth during fetal and adult development, primarily through its stimulatory effects on cell proliferation and survival. IGF signaling is also required for development of the reproductive system, although its precise role in this regard remains unclear. We have hypothesized that IGF signaling is required for embryonic germline development, which requires the specification and proliferation of primordial germ cells (PGCs) in an extragonadal location, followed by directed migration to the genital ridges. We tested this hypothesis using loss-of-function studies in the zebrafish embryo, which possesses two functional copies of the Type-1 IGF receptor gene (igf1ra, igf1rb). Knockdown of IGF1Rb by morpholino oligonucleotides (MO) results in mismigration and elimination of primordial germ cells (PGCs), resulting in fewer PGCs colonizing the genital ridges. In contrast, knockdown of IGF1Ra has no effect on PGC migration or number despite inducing widespread somatic cell apoptosis. Ablation of both receptors, using combined MO injections or overexpression of a dominant-negative IGF1R, yields embryos with a PGC-deficient phenotype similar to IGF1Rb knockdown. TUNEL analyses revealed that mismigrated PGCs in IGF1Rb-deficient embryos are eliminated by apoptosis; overexpression of an antiapoptotic gene (Bcl2l) rescues ectopic PGCs from apoptosis but fails to rescue migration defects. Lastly, we show that suppression of IGF signaling leads to quantitative changes in the expression of genes encoding CXCL-family chemokine ligands and receptors involved in PGC migration. Collectively, these data suggest a novel role for IGF signaling in early germline development, potentially via cross-talk with chemokine signaling pathways.
Assuntos
Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Germinativas/fisiologia , Transdução de Sinais/fisiologia , Somatomedinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Análise de Variância , Animais , Western Blotting , Quimiocinas/metabolismo , Primers do DNA , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Fator de Crescimento Insulin-Like I , Microscopia de Fluorescência , Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somatomedinas/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
We have examined the ability of selected hormones and growth factors to suppress the spontaneous onset on apoptotic DNA fragmentation in isolated vitellogenic rainbow trout ovarian follicles cultured in serum-free conditions. Primary culture of isolated follicles for 24 hr in serum-free conditions resulted in a 3-5-fold increase in the amount of fragmented DNA as compared to non-cultured controls, measured by radioactive 3'end-labeling. Culture in medium containing salmon gonadotropin (SG-G100; 1, 5 microg/ml) suppressed the spontaneous onset of DNA fragmentation in dose-dependent fashion. Culture with 1 ng/ml 17beta-estradiol, or 100 ng/ml epidermal growth factor also suppressed the spontaneous onset of apoptosis, whereas culture with higher concentrations of 17beta-estradiol (10 and 100 ng/ml), insulin-like growth factor I (IGF-I; 1, 10, and 100 ng/ml), or 8-bromo-cAMP (0.1, 1, and 5 mM) was ineffective in suppressing apoptosis. Apoptosis was confirmed as the mode of cell death through positive identification of nuclear morphological characteristics associated with apoptosis, and positive staining for fragmented DNA using in situ end-labeling (TUNEL); apoptotic cells identified in situ were almost exclusively localized to the thecal/epithelial region of the follicle. In summary, this study shows that vitellogenic ovarian follicles are susceptible to apoptosis and that both endocrine and locally-derived growth factors may play a role as cell survival factors by preventing apoptosis. The study also suggests that rainbow trout differ markedly from mammals both in terms of the cell types susceptible to apoptosis and the responsiveness to specific growth factors in terms of inhibiting apoptosis.
Assuntos
Apoptose/fisiologia , Fator de Crescimento Epidérmico/fisiologia , Estradiol/fisiologia , Gonadotropinas/fisiologia , Oncorhynchus mykiss/fisiologia , Folículo Ovariano/fisiologia , Animais , Apoptose/efeitos dos fármacos , Fragmentação do DNA , Fator de Crescimento Epidérmico/farmacologia , Feminino , Gonadotropinas/farmacologia , Marcação In Situ das Extremidades Cortadas , Folículo Ovariano/patologiaRESUMO
Our recent studies show little evidence for increased granulosa cell apoptosis during atresia in teleost follicles, in direct contrast to the mammalian model. Histological evidence suggests that atresia in many oviparous vertebrates involves proteolytic degradation of the energy-rich yolk storage proteins within the oocyte. This study tests the hypothesis that physiological conditions that promote atresia (hormone withdrawal) lead to increased lysosomal protease activity in rainbow trout oocytes. We subjected rainbow trout ovarian follicles to conditions that promote atresia (serum-free culture) for up to 72 hr, and measured the activity of lysosomal proteases using routine enzymatic assays. Furthermore, we used high performance liquid chromatography to quantify the increase in free amino acids resulting from proteolysis of yolk proteins. Concomitantly, we evaluated the extent of follicular apoptosis during prolonged serum-free culture, using caspase-3-like activity and DNA fragmentation as indicators of apoptosis. Our results show a significant, time-dependent increase in cathepsin L-like, but not cathepsin D-like, activity levels during culture in serum-free medium; increased cathepsin L-like activity is confirmed by a significant increase in oocyte free amino acid content after 72 hr culture. In contrast, we detected only a transient increase in apoptosis during prolonged serum-free culture, as revealed through both radioactive 3'end-labeling of oligonucleosomal DNA fragments, and caspase-3-like activity. The results of this study provide the first evidence for a novel mechanism of follicular atresia in teleosts involving cathepsin-mediated yolk proteolysis.
Assuntos
Proteínas do Ovo/metabolismo , Oncorhynchus mykiss/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Animais , Apoptose/fisiologia , Caspase 3 , Caspases/metabolismo , Meios de Cultura Livres de Soro , Fragmentação do DNA/fisiologia , FemininoRESUMO
The synthesis, uptake, and processing of yolk proteins remain poorly described aspects of oviparous reproductive development. In this study, we report the identification and characterization of two protease inhibitors in rainbow trout ovary whose expression and distribution are directly associated with yolk protein uptake in vitellogenic oocytes. The first transcript, termed "oocyte protease inhibitor-1" (OPI-1), is predicted to encode a 9.1 kDa, 87 amino acid protein containing a single thyroglobulin type-1 (TY) domain, identifying it as a putative TY domain inhibitor. The second transcript, termed OPI-2, is predicted to encode an 18.3 kDa, 173 amino acid protein with two similar, but not identical, TY domains. Messenger RNA expression of both genes was first detected in ovarian tissues at the onset of vitellogenesis, and persisted throughout the vitellogenic growth phase. We did not detect expression of either gene in previtellogenic ovaries, nor in any somatic tissues examined. Expression of OPI-1 mRNA was significantly reduced in atretic follicles as compared to healthy vitellogenic follicles, suggesting a downregulation of inhibitor expression during oocyte atresia. Western immunoblot analyses of whole yolk from vitellogenic oocytes revealed the presence of two immunoreactive proteins that corresponded to the predicted sizes of OPI-1 and OPI-2. We detected strong crossreactivity of this antiserum with specific vesicles in the cortical ooplasm of vitellogenic oocytes, in regions directly associated with vitellogenin processing. The identification of OPI-1 and OPI-2 provides new evidence for the expression of multiple TY domain protease inhibitors likely involved in the regulation of yolk processing during oocyte growth in salmonids.