Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 510(2): 198-204, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30685089

RESUMO

Malignant mesothelioma is an aggressive fibrous tumor, predominantly of the pleura, with a very poor prognosis. Cell-matrix interactions are recognized important determinants of tumor growth and invasiveness but the role of the extracellular matrix in mesothelioma is unknown. Mesothelioma cells synthesize collagen as well as transforming growth factor-beta (TGF-ß), a key regulator of collagen production. This study examined the effect of inhibiting collagen production on mesothelioma cell proliferation in vitro and tumor growth in vivo. Collagen production by mesothelioma cells was inhibited by incubating cells in vitro with the proline analogue thiaproline (thiazolidine-4-carboxylic acid) or by oral administration of thiaproline in a murine tumor model. Cell cytotoxicity was measured using neutral red uptake and lactate dehydrogenase assays. Proliferation was measured by tritiated thymidine incorporation, and inflammatory cell influx, proliferation, apoptosis and angiogenesis in tumors examined by immunohistochemical labelling. Tumor size was determined by tumor weight and collagen production was measured by HPLC. Thiaproline at non-toxic doses significantly reduced basal and TGF-ß-induced collagen production by over 50% and cell proliferation by over 65%. In vivo thiaproline administration inhibited tumor growth at 10 days, decreasing the median tumor weight by 80%. The mean concentration of collagen was 50% lower in the thiaproline-treated tumors compared with the controls. There were no significant differences in vasculature or inflammatory cell infiltration but apoptosis was increased in thiaproline treated tumors at day 10. In conclusion, these observations strongly support a role for collagen in mesothelioma growth and establish the potential for inhibitors of collagen synthesis in mesothelioma treatment.


Assuntos
Colágeno/biossíntese , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurais/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Colágeno/antagonistas & inibidores , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Humanos , Inflamação , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Camundongos Endogâmicos CBA , Neoplasias Pleurais/patologia , Tiazolidinas/farmacologia , Fator de Crescimento Transformador beta/metabolismo
2.
Surg Technol Int ; I: 221-223, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28581616

RESUMO

Left ventricular assist device (LVADs) have been used with increasing frequency since the late 1980s. Technology has improved these devices to make them less thrombogenic and has decreased their size to allow greater application. By definition, the LVAD only assists or supports the pumping function of the left ventricle, unlike cardiopulmonary bypass which provides total circulatory and pulmonary function. LVADs support the circulation for hours to days and occasionally for weeks when the left and/or right ventricle has failed and is therefore unable to sustain the circulation. The hope is that by temporarily supporting the circulation, ventricular function will return. In other instances, LVAD type devices (also known as prosthetic ventricles) are used to 'bridge' the time until a suitable heart donor can be located for transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA