Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(4): 731-745, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31916773

RESUMO

Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors-atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors-using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.

2.
J Chem Phys ; 148(24): 241721, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960331

RESUMO

The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functions in EAM. The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similar to artificial neural network potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting. The quality of this new potential form is measured through a robust cross-validation analysis.

3.
J Phys Chem A ; 118(5): 885-95, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24400687

RESUMO

We use molecular dynamics simulations with the reactive potential ReaxFF to investigate the initial reactions and subsequent decomposition in the high-energy-density material α-HMX excited thermally and via electric fields at various frequencies. We focus on the role of insult type and strength on the energy increase for initial decomposition and onset of exothermic chemistry. We find both of these energies increase with the increasing rate of energy input and plateau as the processes become athermal for high loading rates. We also find that the energy increase required for exothermic reactions and, to a lesser extent, that for initial chemical reactions depend on the insult type. Decomposition can be induced with relatively weak insults if the appropriate modes are targeted but increasing anharmonicities during heating lead to fast energy transfer and equilibration between modes that limit the effect of loading type.

4.
J Phys Chem Lett ; 15(4): 1152-1160, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38269426

RESUMO

Diamond possesses exceptional physical properties due to its remarkably strong carbon-carbon bonding, leading to significant resilience to structural transformations at very high pressures and temperatures. Despite several experimental attempts, synthesis and recovery of the theoretically predicted post-diamond BC8 phase remains elusive. Through quantum-accurate multimillion atom molecular dynamics (MD) simulations, we have uncovered the extreme metastability of diamond at very high pressures, significantly exceeding its range of thermodynamic stability. We predict the post-diamond BC8 phase to be experimentally accessible only within a narrow high pressure-temperature region of the carbon phase diagram. The diamond to BC8 transformation proceeds through premelting followed by BC8 nucleation and growth in the metastable carbon liquid. We propose a double-shock compression pathway for BC8 synthesis, which is currently being explored in experiments at the National Ignition Facility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA