Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 46(3): 623-631, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28724108

RESUMO

Wildland fire can alter mercury (Hg) cycling on land and in adjacent aquatic environments. In addition to enhancing local atmospheric Hg redeposition, fire can influence terrestrial movement of Hg and other elements into lakes via runoff from burned upland soil. However, the impact of fire on water quality and the accumulation of Hg in fish remain equivocal. We investigated the effects of fire-specifically, a low-severity prescribed fire and moderate-severity wildfire-on young-of-the-year yellow perch () and lake chemistry in a small remote watershed in the Boundary Waters Canoe Area Wilderness in northeastern Minnesota. We used a paired watershed approach: the fire-affected watershed was compared with an adjacent, unimpacted (reference) watershed. Prior to fire, upland organic horizons in the two study watersheds contained 1549 µg Hg m on average. Despite a 19% decrease in upland organic horizon Hg stocks due to the moderate severity wildfire fire, fish Hg accumulation and lake productivity were not affected by fire in subsequent years. Instead, climate and lake water levels were the strongest predictors of lake chemistry and fish responses in our study lakes over 9 yr. Our results suggest that low- to moderate-severity wildland fire does not alter lake productivity or Hg accumulation in young-of-the-year yellow perch in these small, shallow lakes in the northern deciduous and boreal forest region.


Assuntos
Mercúrio/análise , Percas , Poluentes Químicos da Água/análise , Incêndios Florestais , Animais , Incêndios , Lagos , Minnesota
2.
J Environ Qual ; 41(2): 495-505, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22370412

RESUMO

The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term changes in THg concentrations for resident fish. Principal component analysis was used to evaluate the spatial relationships of 42 chemical elements in three soil horizons over 10 watersheds. Results indicate that soil organic carbon is the primary factor controlling the spatial variation of certain metals (Hg, Tl, Pb, Bi, Cd, Sn, Sb, Cu, and As) in the O and A soil horizons. In the B/E horizon, organic carbon appeared to play a minor role in metal spatial variation. These characteristics are consistent with the concentration of soil organic matter and carbon decreasing from the O to the B/E horizons. We also investigated the relationship between percent change in upland soil organic content and fish THg concentrations across all watersheds. Statistical regression analysis indicates that a 50% reduction in age-one and age-two fish THg concentration could result from an average 10% decrease in upland soil organic content. Disturbances that decrease the content of THg and organic matter in the O and A horizons (e.g., fire) may cause a short-term increase in atmospherically deposited mercury but, over the long term, may lead to decreased fish THg concentrations in affected watersheds.


Assuntos
Ecossistema , Mercúrio/metabolismo , Compostos Orgânicos/metabolismo , Solo/química , Animais , Incêndios , Peixes , Lagos/química , Mercúrio/análise , Compostos Orgânicos/análise , Oxirredução , Análise de Componente Principal , Árvores
3.
PLoS One ; 9(2): e86855, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551042

RESUMO

Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter - total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r(2) = 0.68; p<0.001), but a linear relation at Fishing Brook was weak (r(2) = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.


Assuntos
Mercúrio/análise , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Geografia , Compostos de Metilmercúrio/análise , New York , Compostos Orgânicos/análise , South Carolina , Estatísticas não Paramétricas
4.
Environ Sci Technol ; 44(14): 5371-6, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20553021

RESUMO

Within the Boundary Waters Canoe Area Wilderness in northeastern Minnesota, soils were collected from 116 sites in areas of primarily virgin forest with fire-origin stand years (year of last recognizable stand-killing wildfire) that range from the 1759 to 1976. Median concentrations for total mercury in soils for this span of 217 years range from 0.28 +/- 0.088 ppm (1759) to 0.09 +/- 0.047 ppm (1976) for A-horizon soils and from 0.23 +/- 0.062 ppm (1759) to 0.09 +/- 0.018 ppm (1976) for O-horizon soils. A separate study of soils collected from 30 sites within an area that burned in a 2004 wildfire at Voyageurs National Park, northern Minnesota, suggested that high soil burn severity resulted in significant mercury loss from both organic and mineral soils. Integrated data from these two studies and additional regional soil data demonstrate that older forests have progressively higher mercury concentrations in O-horizon soils (r(2) = 0.423) and A-horizon soils (r(2) = 0.456). These results support the hypotheses that an important factor for mercury concentrations in forest soils is time since stand-replacing fire and that high soil burn severity has the potential to reduce the concentration of mercury in burned soils for tens to hundreds of years.


Assuntos
Incêndios , Mercúrio/química , Solo/análise , Árvores , Minnesota , Fatores de Tempo
5.
Sci Total Environ ; 409(1): 218-27, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20952047

RESUMO

Soils collected in 2004 along two North American continental-scale transects were subjected to geochemical and mineralogical analyses. In previous interpretations of these analyses, data were expressed in weight percent and parts per million, and thus were subject to the effect of the constant-sum phenomenon. In a new approach to the data, this effect was removed by using centered log-ratio transformations to 'open' the mineralogical and geochemical arrays. Multivariate analyses, including principal component and linear discriminant analyses, of the centered log-ratio data reveal the effects of soil-forming processes, including soil parent material, weathering, and soil age, at the continental-scale of the data arrays that were not readily apparent in the more conventionally presented data. Linear discriminant analysis of the data arrays indicates that the majority of the soil samples collected along the transects can be more successfully classified with Level 1 ecological regional-scale classification by the soil geochemistry than soil mineralogy. A primary objective of this study is to discover and describe, in a parsimonious way, geochemical processes that are both independent and inter-dependent and manifested through compositional data including estimates of the elements and corresponding mineralogy.


Assuntos
Minerais/química , Solo/química , Monitoramento Ambiental , Fenômenos Geológicos , Minerais/análise , Análise Multivariada , América do Norte
6.
Sci Total Environ ; 407(13): 4117-26, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19349066

RESUMO

The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue concentration and a total of 45 watershed and water chemistry parameters were evaluated for two separate years: 2005 and 2006. Results show agreement with other studies where watershed area, lake water pH, nutrient levels (specifically dissolved NO(3)(-)-N) and dissolved iron are important factors controlling and/or predicting fish THg level. Exceeding all was the strong dependence of yellow perch THg level on soil A-horizon THg and, in particular, soil O-horizon THg concentrations (Spearman rho=0.81). Soil B-horizon THg concentration was significantly correlated (Pearson r=0.75) with lake water THg concentration. Lakes surrounded by a greater percentage of shrub wetlands (peatlands) had higher fish tissue THg levels, thus it is highly possible that these wetlands are main locations for mercury methylation. Stepwise regression was used to develop empirical models for the purpose of predicting the spatial variation in yellow perch THg over the studied region. The 2005 regression model demonstrates it is possible to obtain good prediction (up to 60% variance description) of resident yellow perch THg level using upland soil O-horizon THg as the only independent variable. The 2006 model shows even greater prediction (r(2)=0.73, with an overall 10 ng/g [tissue, wet weight] margin of error), using lake water dissolved iron and watershed area as the only model independent variables. The developed regression models in this study can help with interpreting THg concentrations in low trophic level fish species for untested lakes of the greater Superior National Forest and surrounding Boreal ecosystem.


Assuntos
Mercúrio/farmacocinética , Percas/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA