Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 313(5): C533-C540, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855162

RESUMO

Transient muscle paralysis engendered by a single injection of botulinum toxin A (BTxA) rapidly induces profound focal bone resorption within the medullary cavity of adjacent bones. While initially conceived as a model of mechanical disuse, osteoclastic resorption in this model is disproportionately severe compared with the modest gait defect that is created. Preliminary studies of bone marrow following muscle paralysis suggested acute upregulation of inflammatory cytokines, including TNF-α and IL-1. We therefore hypothesized that BTxA-induced muscle paralysis would rapidly alter the inflammatory microenvironment and the osteoclastic potential of bone marrow. We tested this hypothesis by defining the time course of inflammatory cell infiltration, osteoinflammatory cytokine expression, and alteration in osteoclastogenic potential in the tibia bone marrow following transient muscle paralysis of the calf muscles. Our findings identified inflammatory cell infiltration within 24 h of muscle paralysis. By 72 h, osteoclast fusion and pro-osteoclastic inflammatory gene expression were upregulated in tibia bone marrow. These alterations coincided with bone marrow becoming permissive to the formation of osteoclasts of greater size and greater nuclei numbers. Taken together, our data are consistent with the thesis that transient calf muscle paralysis induces acute inflammation within the marrow of the adjacent tibia and that these alterations are temporally consistent with a role in mediating muscle paralysis-induced bone resorption.


Assuntos
Reabsorção Óssea/fisiopatologia , Inflamação/etiologia , Músculo Esquelético/efeitos dos fármacos , Osteoclastos/patologia , Paralisia/fisiopatologia , Animais , Medula Óssea/patologia , Reabsorção Óssea/etiologia , Toxinas Botulínicas Tipo A/toxicidade , Feminino , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuromusculares/toxicidade , Paralisia/induzido quimicamente , Paralisia/imunologia , Linfócitos T/imunologia
2.
J Cell Biochem ; 118(8): 2141-2150, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27996212

RESUMO

The importance of Wnt pathway signaling in development of bone has been well established. Here we investigated the role of a known Wnt target, ENC1 (ectodermal-neural cortex 1; NRP/B), in osteoblast differentiation. Enc1 expression was detected in mouse osteoblasts, chondrocytes, and osteocytes by in situ hybridization, and osteoblastic expression was verified in differentiating primary cultures and MC3T3-E1 pre-osteoblast cells, with 57 kDa and 67 kDa ENC1 protein isoforms detected throughout differentiation. Induced knockdown of both ENC1 isoforms reduced alkaline phosphatase staining and virtually abolished MC3T3-E1 mineralization. At culture confluence, Alpl (alkaline phosphatase liver/bone/kidney) expression was markedly reduced compared with control cells, and there was significant and coordinated alteration of other genes involved in cellular phosphate biochemistry. In contrast, with 67 kDa-selective knockdown mineralized nodule formation was enhanced and there was a two-fold increase in Alpl expression at confluence. There was enhanced expression of Wnt/ß-catenin target genes with knockdown of both isoforms at this time-point and a five-fold increase in Frzb (Frizzled related protein) with 67 kDa-selective knockdown at mineralization, indicating possible ENC1 interactions with Wnt signaling in osteoblasts. These results are the first to demonstrate a role for ENC1 in the control of osteoblast differentiation. Additionally, the contrasting mineralization phenotypes and transcriptional patterns seen with coordinate knockdown of both ENC1 isoforms vs selective knockdown of 67 kDa ENC1 suggest opposing roles for the isoforms in regulation of osteoblastic differentiation, through effects on Alpl expression and phosphate cellular biochemistry. This study is the first to report differential roles for the ENC1 isoforms in any cell lineage. J. Cell. Biochem. 118: 2141-2150, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Isoformas de Proteínas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/genética , Calcificação Fisiológica/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Immunoblotting , Hibridização In Situ , Camundongos , Proteínas dos Microfilamentos/genética , Neuropeptídeos/genética , Proteínas Nucleares/genética , Osteócitos/metabolismo , Isoformas de Proteínas/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genética , beta Catenina/metabolismo
3.
PLoS One ; 13(11): e0207354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427927

RESUMO

At sufficient dose, intramuscular injection of Botulinum toxin A causes muscle wasting that is physiologically consistent with surgical denervation and other types of neuromuscular dysfunction. The aim of this study was to clarify early molecular and micro-RNA alterations in skeletal muscle following Botulinum toxin A-induced muscle paralysis. Quadriceps were analyzed for changes in expression of micro- and messenger RNA and protein levels after a single injection of 0.4, 2 or 4U Botulinum toxin A (/100g body weight). After injection with 2.0U Botulinum toxin A, quadriceps exhibited significant reduction in muscle weight and increased levels of ubiquitin ligase proteins at 7, 14 and 28 days. Muscle miR-1 and miR-133a/b levels were decreased at these time points, whereas a dose-responsive increase in miR-206 expression at day 14 was observed. Expression of the miR-133a/b target genes RhoA, Tgfb1 and Ctfg, and the miR-1/206 target genes Igf-1 and Hdac4, were upregulated at 28 days after Botulinum toxin A injection. Increased levels of Hdac4 protein were observed after injection, consistent with anticipated expression changes in direct and indirect Hdac4 target genes, such as Myog. Our results suggest Botulinum toxin A-induced denervation of muscle shares molecular characteristics with surgical denervation and other types of neuromuscular dysfunction, and implicates miR-133/Tgf-ß1/Ctfg and miR-1/Hdac4/Myog signaling during the resultant muscle atrophy.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Histona Desacetilases/genética , MicroRNAs/genética , Músculo Esquelético/efeitos dos fármacos , Fármacos Neuromusculares/farmacologia , Paralisia/induzido quimicamente , Paralisia/genética , Animais , Toxinas Botulínicas Tipo A/administração & dosagem , Feminino , Histona Desacetilases/análise , Injeções Intramusculares , Camundongos Endogâmicos C57BL , MicroRNAs/análise , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Fármacos Neuromusculares/administração & dosagem , Paralisia/fisiopatologia , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
Cell Mol Bioeng ; 7(2): 254-265, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484988

RESUMO

Growing evidence suggests that aging compromises the ability of the skeleton to respond to anabolic mechanical stimuli. Recently, we reported that treating senescent mice with Cyclosporin A (CsA) rescued aging-related deficits in loading-induced bone formation. Given that the actions of CsA are often attributed to inhibition of the calcineurin/NFAT axis, we hypothesized that CsA enhances gene expression in bone cells exposed to fluid flow, by inhibiting nuclear NFATc1 accumulation. When exposed to flow, MC3T3-E1 osteoblastic cells exhibited rapid nuclear accumulation of NFATc1 that was abolished by CsA treatment. Under differentiation conditions, intermittent CsA treatment enhanced gene expression of late osteoblastic differentiation markers and activator protein 1 (AP-1) family members. Superimposing flow upon CsA further enhanced expression of the AP-1 members Fra-1 and c-Jun. To delineate the contribution of NFAT in this response, cells were treated with VIVIT, a specific inhibitor of the calcineurin/NFAT interaction. Treatment with VIVIT blocked flow-induced nuclear NFATc1 accumulation but did not recapitulate the CsA-mediated enhancement of flow-induced AP-1 component gene expression. Taken together, our study is the first to demonstrate that CsA enhances mechanically-induced gene expression of AP-1 components in bone cells, and suggests that this response requires calcineurin-dependent mechanisms that are independent of inhibiting NFATc1 nuclear accumulation.

5.
PLoS One ; 9(1): e84868, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404194

RESUMO

Age-related decline in periosteal adaptation negatively impacts the ability to utilize exercise to enhance bone mass and strength in the elderly. We recently observed that in senescent animals subject to cyclically applied loading, supplementation with Cyclosporin A (CsA) substantially enhanced the periosteal bone formation rates to levels observed in young animals. We therefore speculated that if the CsA supplement could enhance bone response to a variety of types of mechanical stimuli, this approach could readily provide the means to expand the range of mild stimuli that are robustly osteogenic at senescence. Here, we specifically hypothesized that a given CsA supplement would enhance bone formation induced in the senescent skeleton by both cyclic (1-Hz) and rest-inserted loading (wherein a 10-s unloaded rest interval is inserted between each load cycle). To examine this hypothesis, the right tibiae of senescent female C57BL/6 mice (22 Mo) were subjected to cyclic or rest-inserted loading supplemented with CsA at 3.0 mg/kg. As previously, we initially found that while the periosteal bone formation rate (p.BFR) induced by cyclic loading was enhanced when supplemented with 3.0 mg/kg CsA (by 140%), the response to rest-inserted loading was not augmented at this CsA dosage. In follow-up experiments, we observed that while a 30-fold lower CsA dosage (0.1 mg/kg) significantly enhanced p.BFR induced by rest-inserted loading (by 102%), it was ineffective as a supplement with cyclic loading. Additional experiments and statistical analysis confirmed that the dose-response relations were significantly different for cyclic versus rest-inserted loading, only because the two stimuli required distinct CsA dosages for efficacy. While not anticipated a priori, clarifying the complexity underlying the observed interaction between CsA dosage and loading type holds potential for insight into how bone response to a broad range of mechanical stimuli may be substantially enhanced in the senescent skeleton.


Assuntos
Osso e Ossos/efeitos dos fármacos , Ciclosporina/administração & dosagem , Osteogênese/efeitos dos fármacos , Fatores Etários , Envelhecimento/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Camundongos
6.
J Bone Miner Res ; 29(11): 2346-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24806738

RESUMO

Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (eg, development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study, we developed a model of BTx-induced muscle paralysis in adult zebrafish, and we examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Toxinas Botulínicas/toxicidade , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Paralisia/metabolismo , Peixe-Zebra/metabolismo , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Paralisia/induzido quimicamente , Paralisia/patologia
7.
PLoS One ; 8(9): e74205, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040202

RESUMO

Bone has long been established to be a highly mechanosensitive tissue. When subjected to mechanical loading, bone exhibits profoundly different anabolic responses depending on the temporal pattern in which the stimulus is applied. This phenomenon has been termed temporal processing, and involves complex signal amplification mechanisms that are largely unidentified. In this study, our goal was to characterize transcriptomic perturbations arising from the insertion of intermittent rest periods (a temporal variation with profound effects on bone anabolism) in osteoblastic cells subjected to fluid flow, and assess the utility of these perturbations to identify signaling pathways that are differentially activated by this temporal variation. At the level of the genome, we found that the common and differential alterations in gene expression arising from the two flow conditions were distributionally distinct, with the differential alterations characterized by many small changes in a large number of genes. Using bioinformatics analysis, we identified distinct up- and down-regulation transcriptomic signatures associated with the insertion of rest intervals, and found that the up-regulation signature was significantly associated with MAPK signaling. Confirming the involvement of the MAPK pathway, we found that the insertion of rest intervals significantly elevated flow-induced p-ERK1/2 levels by enabling a second spike in activity that was not observed in response to continuous flow. Collectively, these studies are the first to characterize distinct transcriptomic perturbations in bone cells subjected to continuous and intermittent stimulation, and directly demonstrate the utility of systems-based transcriptomic analysis to identify novel acute signaling pathways underlying temporal processing in bone cells.


Assuntos
Osso e Ossos/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular , Osteoblastos/metabolismo , Transcriptoma , Animais , Osso e Ossos/citologia , Linhagem Celular , Perfilação da Expressão Gênica , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/citologia , Reologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA