Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 82: 201-215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364997

RESUMO

Chemically defined media for cultivation of Saccharomyces cerevisiae strains are commonly supplemented with a mixture of multiple Class-B vitamins, whose omission leads to strongly reduced growth rates. Fast growth without vitamin supplementation is interesting for industrial applications, as it reduces costs and complexity of medium preparation and may decrease susceptibility to contamination by auxotrophic microbes. In this study, suboptimal growth rates of S. cerevisiae CEN.PK113-7D in the absence of pantothenic acid, para-aminobenzoic acid (pABA), pyridoxine, inositol and/or biotin were corrected by single or combined overexpression of ScFMS1, ScABZ1/ScABZ2, ScSNZ1/ScSNO1, ScINO1 and Cyberlindnera fabianii BIO1, respectively. Several strategies were explored to improve growth of S. cerevisiae CEN.PK113-7D in thiamine-free medium. Overexpression of ScTHI4 and/or ScTHI5 enabled thiamine-independent growth at 83% of the maximum specific growth rate of the reference strain in vitamin-supplemented medium. Combined overexpression of seven native S. cerevisiae genes and CfBIO1 enabled a maximum specific growth rate of 0.33 ± 0.01 h-1 in vitamin-free synthetic medium. This growth rate was only 17 % lower than that of a congenic reference strain in vitamin-supplemented medium. Physiological parameters of the engineered vitamin-independent strain in aerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) grown on vitamin-free synthetic medium were similar to those of similar cultures of the parental strain grown on vitamin-supplemented medium. Transcriptome analysis revealed only few differences in gene expression between these cultures, which primarily involved genes with roles in Class-B vitamin metabolism. These results pave the way for development of fast-growing vitamin-independent industrial strains of S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vitaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biotina/metabolismo , Tiamina , Meios de Cultura
2.
Metab Eng ; 67: 88-103, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052444

RESUMO

An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia coli biotin-biosynthesis pathway in S. cerevisiae. Implementation of this pathway required expression of seven E. coli genes involved in fatty-acid synthesis and three E. coli genes essential for the formation of a pimelate thioester, key precursor of biotin synthesis. A yeast strain expressing these genes readily grew in biotin-free medium, irrespective of the presence of oxygen. However, the engineered strain exhibited specific growth rates 25% lower in biotin-free media than in biotin-supplemented media. Following adaptive laboratory evolution in anoxic cultures, evolved cell lines that no longer showed this growth difference in controlled bioreactors, were characterized by genome sequencing and proteome analyses. The evolved isolates exhibited a whole-genome duplication accompanied with an alteration in the relative gene dosages of biosynthetic pathway genes. These alterations resulted in a reduced abundance of the enzymes catalyzing the first three steps of the E. coli biotin pathway. The evolved pathway configuration was reverse engineered in the diploid industrial S. cerevisiae strain Ethanol Red. The resulting strain grew at nearly the same rate in biotin-supplemented and biotin-free media non-controlled batches performed in an anaerobic chamber. This study established an unique genetic engineering strategy to enable biotin-independent anoxic growth of S. cerevisiae and demonstrated its portability in industrial strain backgrounds.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Biotina , Escherichia coli , Oxigênio , Saccharomyces cerevisiae/genética
3.
Yeast ; 37(4): 283-304, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972058

RESUMO

Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.


Assuntos
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vitaminas/biossíntese , Biomassa , Biotina/biossíntese , Inositol/biossíntese , Niacina/biossíntese , Ácido Pantotênico/biossíntese , Piridoxina/biossíntese , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiamina/biossíntese
4.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32276977

RESUMO

Biotin, an important cofactor for carboxylases, is essential for all kingdoms of life. Since native biotin synthesis does not always suffice for fast growth and product formation, microbial cultivation in research and industry often requires supplementation of biotin. De novo biotin biosynthesis in yeasts is not fully understood, which hinders attempts to optimize the pathway in these industrially relevant microorganisms. Previous work based on laboratory evolution of Saccharomyces cerevisiae for biotin prototrophy identified Bio1, whose catalytic function remains unresolved, as a bottleneck in biotin synthesis. This study aimed at eliminating this bottleneck in the S. cerevisiae laboratory strain CEN.PK113-7D. A screening of 35 Saccharomycotina yeasts identified six species that grew fast without biotin supplementation. Overexpression of the S. cerevisiaeBIO1 (ScBIO1) ortholog isolated from one of these biotin prototrophs, Cyberlindnera fabianii, enabled fast growth of strain CEN.PK113-7D in biotin-free medium. Similar results were obtained by single overexpression of C. fabianii BIO1 (CfBIO1) in other laboratory and industrial S. cerevisiae strains. However, biotin prototrophy was restricted to aerobic conditions, probably reflecting the involvement of oxygen in the reaction catalyzed by the putative oxidoreductase CfBio1. In aerobic cultures on biotin-free medium, S. cerevisiae strains expressing CfBio1 showed a decreased susceptibility to contamination by biotin-auxotrophic S. cerevisiae This study illustrates how the vast Saccharomycotina genomic resources may be used to improve physiological characteristics of industrially relevant S. cerevisiaeIMPORTANCE The reported metabolic engineering strategy to enable optimal growth in the absence of biotin is of direct relevance for large-scale industrial applications of S. cerevisiae Important benefits of biotin prototrophy include cost reduction during the preparation of chemically defined industrial growth media as well as a lower susceptibility of biotin-prototrophic strains to contamination by auxotrophic microorganisms. The observed oxygen dependency of biotin synthesis by the engineered strains is relevant for further studies on the elucidation of fungal biotin biosynthesis pathways.


Assuntos
Biotina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ascomicetos/enzimologia , Ascomicetos/genética , Engenharia Metabólica , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Leveduras/enzimologia , Leveduras/genética
5.
Microbiol Resour Announc ; 13(2): e0055023, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132639

RESUMO

The biobased-economy aims to create a circular biotechnology ecosystem to transition from a fossil fuel-based to a sustainable industry based on biomass. For this, new microbial cell-factories are essential. We present the draft genome of the CEN.PK-derived Saccharomyces cerevisiae SpyCas9 expressing strain (IMX2600), that serve as chassis of new cell-factories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA