Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1414093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38916033

RESUMO

Stipa breviflora is a dominant species in the desert steppe of Northern China. Grazing is the main land use pattern of grassland, which could cause a variety of adaptive evolutionary mechanisms in plant community composition as well as individual plant growth and morphological characteristics. However, very little is known about the morphological structure and transcriptional regulation response to different grazing intensities in S. breviflora. In this study, transcriptome and anatomical analyses of S. breviflora under different grazing intensities, including no grazing, moderate grazing, and heavy grazing, were performed. The anatomical analysis results showed that epidermis cells and xylems significantly thicken with grazing intensity, suggesting that grazing results in increasing lignification. Furthermore, the components of cell walls such as lignin, cellulose, hemicellulose, and pectin were all increased dramatically and significantly under both moderate and heavy grazing. Transcriptome analysis showed that the differentially expressed genes related to different grazing intensities were also engaged in plant cell wall formation and in photosynthesis and respiration. In addition, the activities of ATP synthase and Rubisco-activating enzyme increased significantly with enhanced grazing intensity and differed significantly between moderate and heavy grazing intensities. The trends in transcriptome and plant phenotype changes are consistent. Taken together, these results indicated that S. breviflora has evolved a grazing tolerance strategy under long-term grazing conditions, influencing photosynthesis and respiration in terms of its own structure and enzyme activities in the body, to maintain normal life activities under different grazing conditions.

2.
Funct Plant Biol ; 512024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739736

RESUMO

The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.


Assuntos
Medicago sativa , Caules de Planta , Amido , Sacarose , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crescimento & desenvolvimento , Amido/metabolismo , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica
3.
Plants (Basel) ; 11(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235467

RESUMO

Stems are more important to forage quality than leaves in alfalfa. To understand lignin formation at different stages in alfalfa, lignin distribution, anatomical characteristics and transcriptome profile were employed using two alfalfa cultivars. The results showed that the in vitro true digestibility (IVTD) of stems in WL168 was significantly higher than that of Zhungeer, along with the significantly lower neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin contents. In addition, Zhungeer exhibited increased staining of the xylem areas in the stems of different developmental stages compared to WL168. Interestingly, the stems of WL168 appeared intracellular space from the stage 3, while Zhungeer did not. The comparative transcriptome analysis showed that a total of 1993 genes were differentially expressed in the stem between the cultivars, with a higher number of expressed genes in the stage 4. Of the differentially expressed genes, starch and sucrose metabolism as well as phenylpropanoid biosynthesis pathways were the most significantly enriched pathways. Furthermore, expression of genes involved in lignin biosynthesis such as PAL, 4CL, HCT, CAD, COMT and POD coincides with the anatomic characteristics and lignin accumulation. These results may help elucidate the regulatory mechanisms of lignin biosynthesis and improve forage quality in alfalfa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA