Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Pediatr ; 20(2): 173-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37737505

RESUMO

BACKGROUND: Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Children with TOF would be confronted with neurological impairment across their lifetime. Our study aimed to identify the risk factors for cerebral morphology changes and cognition in postoperative preschool-aged children with TOF. METHODS: We used mass spectrometry (MS) technology to assess the levels of serum metabolites, Wechsler preschool and primary scale of intelligence-Fourth edition (WPPSI-IV) index scores to evaluate neurodevelopmental levels and multimodal magnetic resonance imaging (MRI) to detect cortical morphological changes. RESULTS: Multiple linear regression showed that preoperative levels of serum cortisone were positively correlated with the gyrification index of the left inferior parietal gyrus in children with TOF and negatively related to their lower visual spaces index and nonverbal index. Meanwhile, preoperative SpO2 was negatively correlated with levels of serum cortisone after adjusting for all covariates. Furthermore, after intervening levels of cortisone in chronic hypoxic model mice, total brain volumes were reduced at both postnatal (P) 11.5 and P30 days. CONCLUSIONS: Our results suggest that preoperative serum cortisone levels could be used as a biomarker of neurodevelopmental impairment in children with TOF. Our study findings emphasized that preoperative levels of cortisone could influence cerebral development and cognition abilities in children with TOF.


Assuntos
Cortisona , Cardiopatias Congênitas , Tetralogia de Fallot , Criança , Humanos , Pré-Escolar , Animais , Camundongos , Tetralogia de Fallot/cirurgia , Cardiopatias Congênitas/cirurgia , Fatores de Risco , Cognição
2.
Commun Biol ; 7(1): 1121, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261625

RESUMO

Neurodevelopmental disorders are currently one of the major complications faced by patients with congenital heart disease (CHD). Chronic hypoxia in the prenatal and postnatal preoperative brain may be associated with neurological damage and impaired long-term cognitive function, but the exact mechanisms are unknown. In this study, we find that delayed neuronal migration and impaired synaptic development are attributed to altered Atoh1 under chronic hypoxia. This is due to the fact that excessive Atoh1 facilitates expression of Kif21b, which causes excess in free-state α-tubulin, leading to disrupted microtubule dynamic stability. Furthermore, the delay in neonatal brain maturation induces cognitive disabilities in adult mice. Then, by down-regulating Atoh1 we alleviate the impairment of cell migration and synaptic development, improving the cognitive behavior of mice to some extent. Taken together, our work unveil that Atoh1 may be one of the targets to ameliorate hypoxia-induced neurodevelopmental disabilities and cognitive impairment in CHD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Disfunção Cognitiva , Neurônios , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Neurônios/metabolismo , Hipóxia/metabolismo , Feminino , Neurogênese , Animais Recém-Nascidos , Camundongos Endogâmicos C57BL , Masculino , Movimento Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA