Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(11): 17921-17929, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381513

RESUMO

Germanium-on-insulator (GOI) has emerged as a novel platform for Ge-based electronic and photonic applications. Discrete photonic devices, such as waveguides, photodetectors, modulators, and optical pumping lasers, have been successfully demonstrated on this platform. However, there is almost no report on the electrically injected Ge light source on the GOI platform. In this study, we present the first fabrication of vertical Ge p-i-n light-emitting diodes (LEDs) on a 150 mm GOI substrate. The high-quality Ge LED on a 150-mm diameter GOI substrate was fabricated via direct wafer bonding followed by ion implantations. As a tensile strain of 0.19% has been introduced during the GOI fabrication process resulting from the thermal mismatch, the LED devices exhibit a dominant direct bandgap transition peak near 0.785 eV (∼1580 nm) at room temperature. In sharp contrast to conventional III-V LEDs, we found that the electroluminescence (EL)/photoluminescence (PL) spectra show enhanced intensities as the temperature is raised from 300 to 450 K as a consequence of the higher occupation of the direct bandgap. The maximum enhancement in EL intensity is a factor of 140% near 1635 nm due to the improved optical confinement offered by the bottom insulator layer. This work potentially broadens the GOI's functional variety for applications in near-infrared sensing, electronics, and photonics.

2.
Opt Express ; 30(4): 4706-4717, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209446

RESUMO

Germanium (Ge) lateral p-i-n photodetectors with grating and hole-array structures were fabricated on a Ge-on-insulator (GOI) platform. Owing to the low threading dislocation density (TDD) in the transferred Ge layer, a low dark current of 0.279 µA was achieved at -1 V. The grating structure enhances the optical absorption by guiding the lateral propagation of normal incident light, contributing to a 3× improved responsivity at 1,550 nm. Compared with the grating structure, the hole-array structure not only guides the lateral modes but also benefits the vertical resonance modes. A 4.5× higher responsivity of 0.188 A/W at 1,550 nm was achieved on the 260 nm Ge absorptive layer. In addition, both the grating and the hole-array structure attribute to a 2× and a 1.6× enhanced 3dB bandwidth at -5 V due to significantly reduced capacitance. The planar configuration of p-i-n photodiodes is favorable for large-scale monolithic integration. The incorporated surface structures offer promising approaches to reinforce the responsivity and bandwidth simultaneously, paving the way for the development of high-performance Ge photodetectors on silicon substrate.

3.
Opt Express ; 29(6): 8498-8509, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820296

RESUMO

Au-hole array and Au-GeSn grating structures were designed and incorporated in GeSn metal-semiconductor-metal (MSM) photodetectors for enhanced photo detection at 2 µm. Both plasmonic structures are beneficial for effective optical confinement near the surface due to surface plasmon resonance (SPR), contributing to an enhanced responsivity. The responsivity enhancement for Au hole-array structure is insensitive to the polarization direction, while the enhancement for Au-GeSn grating structure depends on the polarization direction. The responsivity for GeSn photodetector with Au hole-array structure has ∼50% reinforcement compared with reference photodetector. On the other hand, Au-GeSn grating structure benefits a 3× enhanced responsivity of 0.455 A/W at 1.5V under TM-polarized illumination. The achieved responsivity is among the highest values for GeSn photodetectors operating at 2 µm. The plasmonic GeSn photodetectors in this work offer an alternative solution for high-efficiency photo detection, manifesting their great potentials as candidates for 2 µm optical communication and other emerging applications.

4.
Opt Lett ; 46(15): 3809-3812, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329287

RESUMO

Germanium-tin-on-insulator (GSOI) has emerged as a new platform for three-dimensional (3D) photonic-integrated circuits (PICs). We report, to our knowledge, the first demonstration of GeSn dual-waveband resonant-cavity-enhanced photodetectors (RCE PDs) on GSOI platforms with resonance-enhanced responsivity at both 2 µm and 1.55 µm bands. 10% Sn is introduced to the GeSn absorbing layer to extend the detection wavelength to the 2 µm band. A vertical Fabry-Perot cavity is designed to enhance the responsivity. The measured responsivity spectra show resonance peaks that cover a wide wavelength range near both the 2 µm and conventional telecommunication bands. This work demonstrates that GeSn dual-waveband RCE PDs on a GSOI platform are promising for CMOS-compatible 3D PICs for optoelectronic applications in 2 µm and telecommunication bands.

5.
Nanotechnology ; 32(9): 095606, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33212433

RESUMO

Epitaxial horizontal nanowires (NWs) have attracted much attention due to their easily large-scale integration. From the reported literature, epitaxial growth is usually driven by minimization of strain between NW and substrate, which governs the growth along with specific crystallographic orientation. Here, we report the first homoepitaxial growth of horizontal GaN NWs from a surface-directed vapor-liquid-solid growth method. The NWs grow along with six symmetry-equivalent 〈1-100〉 (m-axis) directions, exhibiting a random 60°/120° kinked configuration. Owing to homoepitaxial growth, strain could be eliminated. From the obtained results, we suggest that the formation the horizontal NWs, and their growth direction /orientation is not directly related to the strain minimization. A general rule based on the epitaxial relationship and potential low-index growth orientation is proposed for understanding the arrangement of epitaxial horizontal NWs. It is deduced that kinking of the horizontal NWs was attributed to unintentional guided growth determined by the roughness of the substrates' surface. This study provides an insight for a better understanding of the evolution of epitaxial horizontal NWs, especially for the growth direction/orientation.

6.
Opt Express ; 28(16): 23978-23990, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752385

RESUMO

Germanium (Ge) vertical p-i-n photodetectors were demonstrated with an ultra-low dark current of 0.57 mA/cm2 at -1 V. A germanium-on-insulator (GOI) platform with a 200-mm wafer scale was realized for photodetector fabrication via direct wafer bonding and layer transfer techniques, followed by oxygen annealing in finance. A thin germanium-oxide (GeOx) layer was formed on the sidewall of photodetectors by ozone oxidation to suppress surface leakage current. The responsivity of the vertical p-i-n annealed GOI photodetectors was revealed to be 0.42 and 0.28 A/W at 1,500 and 1,550 nm at -1 V, respectively. The photodetector characteristics are investigated in comparison with photodetectors with SiO2 surface passivation. The surface leakage current is reduced by a factor of 10 for photodetectors via ozone oxidation. The 3dB bandwidth of 1.72 GHz at -1 V for GeOx surface-passivated photodetectors is enhanced by approximately 2 times compared to the one for SiO2 surface-passivated photodetectors. The 3dB bandwidth is theoretically expected to further enhance to ∼70 GHz with a 5 µm mesa diameter.

7.
Opt Express ; 28(23): 34772-34786, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182938

RESUMO

A GeSn/Ge multiple-quantum-well (MQW) p-i-n photodiode structure was proposed for simultaneously realizing high detectivity photo detection with low dark current and effective optical modulation based on the quantum confined Stark (QCSE) effect. The MQW stacks were grown on a 300-mm Ge-buffered Si substrate using reduced pressure chemical vapor deposition (RPCVD). GeSn/Ge MQW p-i-n photodiodes with varying mesa diameters were fabricated and characterized. An ultralow dark current density of 16.3 mA/cm2 at -1 V was achieved as expected due to the low threading dislocation density (TDD) in pseudomorphic GeSn layer. Owing to the ultralow dark current density and high responsivity of 0.307 A/W, a high specific detectivity of 1.37×1010 cm·Hz1/2/W was accomplished at 1,550 nm, which is comparable with commercial Ge and extended-InGaAs photodetectors. Meanwhile, the bias voltage-dependent photo response was investigated from 1,700 to 2,200 nm. The extracted effective absorption coefficient of GeSn/Ge MQW shows a QCSE behavior with electric field-dependent exciton peaks from 0.688 to 0.690 eV. An absorption ratio of 1.81 under -2 V was achieved at 2 µm, which shows early promise for effective optical modulation. The high frequency response was calculated theoretically, and the predicted 3-dB bandwidth for the photodiode with a mesa diameter of 30 µm could reach 12 GHz at -2 V.

8.
Nanotechnology ; 31(14): 145713, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31860878

RESUMO

Seed-catalysed growth has been proved to be an ideal method to selectively tune the crystal structure of III-V nanowires along its growth axis. However, few results on relevant nitride NWs have been reported. In this study, we demonstrate the growth of epitaxial kinked wurtzite (WZ)/zinc-blende (ZB) heterostructure GaN NW arrays under the oxygen rich condition using hydride vapour-liquid-solid vapour phase epitaxy (VLS-HVPE). The typical GaN crystal includes WZ and ZB phases throughout the whole NW structure. A detailed structural analysis indicates that a stacking faults free zone was occasionally observed near the NW tips and in the relatively long kinked 〈11-23〉 directions segments (>200 nm). Furthermore, some NWs (<5%) develop phase boundaries, resulting in kinking and crystal phase evolution. A layer-by-layer growth mode was proposed to explain the crystal phase evolution along the phase boundaries. This study provides new insights into the controlled growth of wurtzite (WZ)/zinc-blende (ZB) heterostructure GaN NW.

9.
Nanotechnology ; 30(4): 045604, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30485254

RESUMO

Here, we demonstrate the growth of horizontal GaN nanowires (NWs) on silicon (111) by a surface-directed vapor-liquid-solid growth. The influence of the Au/Ni catalysts migration and coalescence on the growth of the NWs has been systematically studied. 2D root-like branched NWs were gown spontaneously through catalyst migration. Furthermore, a novel phenomenon that a catalyst particle is embedded in a horizontal NW was observed and attributed the destruction of growth steady state due to the catalysts coalescence. The transmission electron microscopy and photoluminescence, cathodoluminescence measurement demonstrated that the horizontal NWs exhibit single crystalline structures and good optical properties. Our work sheds light on the horizontal NWs growth and should facilitate the development of highly integrated III-V nanodevices on silicon.

10.
Nanoscale ; 15(10): 4843-4851, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36805597

RESUMO

Black-Si (b-Si) providing broadband light antireflection has become a versatile substrate for photodetectors, photo-electric catalysis, sensors, and photovoltaic devices. However, the conventional fabrication methods suffer from single morphology, low yield, or frangibility. In this work, we present a high-yield CMOS-compatible technique to produce 6-inch wafer-scale b-Si with diverse random nanostructures. b-Si is achieved by O2/SF6 plasma-based reactive ion etching (RIE) of the Si wafer which is coated with a GeSn layer. A stable grid of the SnOxFy layer, formed during the initial GeSn etching, acts as a self-assembled hard mask for the formation of subwavelength Si nanostructures. b-Si wafers with diverse surface morphologies, such as the nanopore, nanocone, nanohole, nanohillock, and nanowire were achieved. Furthermore, the responsivity of the b-Si metal-semiconductor-metal (MSM) photodetector in the near-infrared (NIR) wavelength range (1000-1200 nm) is 40-200% higher than that of a planar-Si MSM photodetector with the same level of dark current, which is beneficial for applications in photon detectors, solar cells, and photocatalysis. This work not only demonstrates a new non-lithography method to fabricate wafer-scale b-Si wafers, but may also provide a novel strategy to fabricate other nanostructured surface materials (e.g., Ge or III-V based compounds) with morphology engineering.

11.
ACS Nano ; 17(13): 12151-12159, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350358

RESUMO

High-detectivity and low-cost short-wave infrared photodetectors with complementary metal-oxide-semiconductor (CMOS) compatibility are attractive for various applications such as next-generation optical communication, LiDAR, and molecular sensing. Here, GeSn/Ge multiple-quantum-well (MQW) photodetectors with a dielectric nanohole array metasurface were proposed to realize high-detectivity and low-cost SWIR photodetection. The Ge nanohole array metasurface was utilized to enhance the light absorption in the GeSn/Ge MQW active layer. Compared with metallic nanostructures, the dielectric nanohole structure has the advantages of low intrinsic loss and CMOS compatibility. The introduction of metasurface architecture facilitates a 10.5 times enhanced responsivity of 0.232 A/W at 2 µm wavelength while slightly sacrificing the dark current density. Besides, the metasurface GeSn/Ge MQW photodetectors benefit 35% improvement in the 3 dB bandwidth compared to control GeSn/Ge MQW photodetectors, which can be attributed to the reduced RC delay. Due to the high responsivity and low dark current density, the room temperature specific detectivity at 2 µm is as high as 5.34 × 109 cm·Hz1/2/W, which is the highest among GeSn photodetectors and is better than commercial InSb and PbSe photodetectors operating at the similar wavelength. This work offers a promising approach for achieving low-cost and effective photodetection at 2 µm, contributing to the development of the 2 µm communication band.

12.
Nanoscale ; 14(19): 7341-7349, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35535767

RESUMO

Semiconductor nanomembranes (NMs) have emerged as an attractive nanomaterial for advanced electronic and photonic devices with attractive features such as transferability and flexibility, enabling heterogeneous integration of multi-functional components. Here, we demonstrate transferable single-layer GeSn NM resonant-cavity-enhanced photodetectors for 2 µm optical communication and multi-spectral short-wave infrared sensing/imaging applications. The single-layer strain-free GeSn NMs with an Sn concentration of 10% are released from a high-quality GeSn-on-insulator (GSOI) substrate with the defective interface regions removed. By transferring the GeSn NMs onto a predesigned distribution Bragg reflector (DBR)/Si substrate, a vertical microcavity is integrated into the device to enhance the light-matter interaction in the GeSn NM. With the integrated cavity and high-quality single-layer GeSn NM, a record responsivity of 0.51 A W-1 at 2 µm wavelength at room temperature is obtained, which is more than two orders of magnitude higher than the reported values of the multiple-layer GeSn membrane photodetectors without cavities. The potential of the device for multi-spectral photodetection is demonstrated by tuning the responsivity spectrum with different NM thicknesses. Theoretical simulations are utilized to analyze and verify the mechanisms of responsivity enhancement. The approach can be applied to other GeSn-NM-based active devices, such as electro-absorption modulators or light emitters, presenting a new pathway towards heterogeneous group-IV photonic integrated circuits with miniaturized devices.

13.
RSC Adv ; 8(4): 2181-2187, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542617

RESUMO

The optical and electrical properties of nitride materials are closely related to their crystallographic orientation. Here, we report our effort on crystallographic orientation manipulation of GaN NWs using vapour-liquid-solid hydride vapour phase epitaxy (VLS-HVPE). The growth orientations of the GaN NWs are tuned from the polar c-axis to the non-polar m-axis by simply varying the supply of III precursors on various substrates, including c-, r, m-plane sapphire, (111) silicon and (0001) GaN. By varying the size of the Ni/Au catalyst, we found that the catalyst size has a negligible influence on the growth orientation of GaN NWs. All these demonstrate that the growth orientation of the GaN NWs is dominated by the flow rate of the precursor, regardless of the catalyst size and the substrate adopted. Moreover, the optical properties of GaN NWs were characterized using micro-photoluminescence, revealing that the observed red luminescence band (near 660 nm) is related to the lateral growth of the GaN NWs. The work presented here will advance the understanding of the VLS process of GaN NWs and represents a step forward towards controllable GaN NW growth.

14.
Nanoscale ; 10(13): 5888-5896, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29521388

RESUMO

Recently, horizontal nanowires (NWs) have attracted much attention due to their increased compatibility with NW-based integrated nanoelectronic and nanophotonic systems. However, it still remains challenging to synthesize horizontal NWs efficiently. Here we introduce a novel method towards controllable growth of horizontal GaN NWs using HVPE with an Au/Ni thin film as the catalyst. By simply flipping the substrate, horizontal GaN NWs with various growth directions and cross sections have been obtained on a sapphire substrate with various facet orientations. Benefiting from the high decomposition frequency of GaCl precursors, the growth rate for the horizontal NWs is as fast as 400 µ h-1. Our results show that the facing orientation of the loaded substrate affects the flow of the local precursor, which determines the growth mode of the GaN NWs, i.e., no matter whether the substrate is facing downward or upwards. Photoluminescence measurements of the horizontal NWs show a finite blue shift of the band edge-related emission. It indicates the presence of compressed stress and is confirmed by the geometrical phase analysis (GPA) further. Our work opens up a new route and sheds light on the horizontal GaN NWs and will advance the development of horizontal NW-based nanoelectronic and nanophotonic devices and systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA