Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Immunol ; 25(1): 41-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036767

RESUMO

Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.


Assuntos
Imunidade Adaptativa , Vacina BCG , Animais , Camundongos , Humanos , Retroalimentação , Vacinação , Redução de Peso , Antivirais , Imunidade Inata
2.
Chaos ; 34(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953752

RESUMO

The synchronous meshing of the gear pair and the screw pair is a typical feature of the planetary roller screw mechanism. In order to fully derive and analyze the nonlinear dynamic characteristics of the system, this paper creatively incorporates the time-varying meshing stiffness of gear pair and the comprehensive transmission error into the research content. Combined with the thread contact force and friction force between the roller and the screw and between the roller and the nut, the nonlinear dynamic model of the planetary roller screw mechanism considering the meshing excitation of the gear pair is established. According to the time domain diagram, frequency domain diagram, phase plane diagram, Poincaré section diagram, three-dimensional spectrum diagram, and spatial phase diagram, the nonlinear behavior of the system is described in detail, and the bifurcation evolution process of the system under the excitation frequency parameters of the external load is revealed. In addition, based on the theory of multi-scale method and considering the variables such as meshing stiffness, meshing damping, and load fluctuation, the stability equation of the primary resonance of the system is derived. The analysis of the stability of the system under different working conditions shows that the parameters are selected within a reasonable range, which effectively reduces the primary common amplitude value and enhances the overall stability of the system. The research content improves the previous system dynamics modeling method and provides a theoretical basis for the nonlinear dynamics modeling method and parameter optimization design of the planetary roller screw mechanism.

3.
Small ; 19(45): e2303915, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37420323

RESUMO

Designing superb dielectric capacitors is valuable but challenging since achieving simultaneously large energy-storage (ES) density and high efficiency is difficult. Herein, the synergistic effect of grain refining, bandgap widening, and domain engineering is proposed to boost comprehensive ES properties by incorporating CaTiO3 into 0.92NaNbO3 -0.08BiNi0.67 Ta0.33 O3 matrix (as abbreviated NN-BNT-xCT). Apart from grain refining and bandgap widening, multiple local distortions embedded in labyrinthine submicro-domains, as indicated by diffraction-freckle splitting and ½-type superlattices, produce slush-like polar clusters for the NN-BNT-0.2CT ceramic, which should be ascribed to the coexisting P4bm, P21 ma, and Pnma2 phases. Consequently, a high recoverable ES density Wrec of ≈ 7.1 J cm-3 and a high efficiency η of ≈ 90% at 646 kV cm-1 is achieved for the NN-BNT-0.2CT ceramic. Such hierarchically polar structure is favorable to superb comprehensive ES properties, which provide a strategy for developing high-performance dielectric capacitors.

4.
Opt Express ; 30(18): 32528-32539, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242312

RESUMO

The adaptive interferometer has been recently proposed to realize the metrology of unknown freeform surfaces with several restructured algorithms for feedback control. The adaptive moment estimation (Adam) stochastic parallel gradient descent (SPGD) algorithm is employed in this paper for fringes release. The proposed algorithm makes considerable progress in relieving conflict of the convergence rate, speed, and parameters intervention. Simulations and experiments show its 37% time saving and 99% convergence rate, with arbitrarily configured parameter increment, compared with the SPGD algorithm. It would have great potential in in-process tests in freeform surface fabrication or large-volume testing.

5.
Opt Lett ; 47(21): 5449-5452, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219241

RESUMO

In addition to the concept of picometer resolution, we discuss macro displacement measurement with a vortex beam interferometer. Three factors limiting large displacement measurement are resolved. Small topological charge numbers promise both high sensitivity and large displacement measurements. With a computing visual method, a virtual moiré pointer image immune to beam misalignment is proposed to calculate displacements. Interestingly, the absolute benchmark is found for cycle counting in the moiré pointer image of fractional topological charge. The vortex beam interferometer would not stop at the tiny displacement measurement in simulations. We report experimental measurements of nanoscale to hundred millimeter displacement in a vortex beam displacement measurement interferometer (DMI) for the first time, to the best of our knowledge.

6.
BMC Genomics ; 22(1): 407, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082700

RESUMO

BACKGROUND: Next-generation sequencing (NGS) is an efficient tool used for identifying pathogenic variants that cause Mendelian disorders. However, the lack of bioinformatics training of researchers makes the interpretation of identified variants a challenge in terms of precision and efficiency. In addition, the non-standardized phenotypic description of human diseases also makes it difficult to establish an integrated analysis pathway for variant annotation and interpretation. Solutions to these bottlenecks are urgently needed. RESULTS: We develop a tool named "Cruxome" to automatically annotate and interpret single nucleotide variants (SNVs) and small insertions and deletions (InDels). Our approach greatly simplifies the current burdensome task of clinical geneticists and scientists to identify the causative pathogenic variants and build personal knowledge reference bases. The integrated architecture of Cruxome offers key advantages such as an interactive and user-friendly interface and the assimilation of electronic health records of the patient. By combining a natural language processing algorithm, Cruxome can efficiently process the clinical description of diseases to HPO standardized vocabularies. By using machine learning, in silico predictive algorithms, integrated multiple databases and supplementary tools, Cruxome can automatically process SNVs and InDels variants (trio-family or proband-only cases) and clinical diagnosis records, then annotate, score, identify and interpret pathogenic variants to finally generate a standardized clinical report following American College of Medical Genetics and Genomics/ Association for Molecular Pathology (ACMG/AMP) guidelines. Cruxome also provides supplementary tools to examine and visualize the genes or variations in historical cases, which can help to better understand the genetic basis of the disease. CONCLUSIONS: Cruxome is an efficient tool for annotation and interpretation of variations and dramatically reduces the workload for clinical geneticists and researchers to interpret NGS results, simplifying their decision-making processes. We present an online version of Cruxome, which is freely available to academics and clinical researchers. The site is accessible at http://114.251.61.49:10024/cruxome/ .


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Algoritmos , Biologia Computacional , Bases de Dados Genéticas , Variação Genética , Humanos , Mutação INDEL , Software
7.
PLoS Pathog ; 15(11): e1008096, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31693704

RESUMO

Candida albicans is one of the top leading causes of healthcare-associated bloodstream infection. Neutrophil extracellular traps (NET) are known to capture and kill pathogens. It is reported that opsonized C. albicans-triggered NETosis is NADPH oxidase-dependent. We discovered a NADPH oxidase-independent NETosis pathway in neutrophil response to unopsonized C. albicans. While CR3 engagement with opsonized C. albicans triggered NET, dectin-2 recognized unopsonized C. albicans and mediated NET formation. Engagement of dectin-2 activated the downstream Syk-Ca2+-PKCδ-protein arginine deiminase 4 (PAD4) signaling pathway which modulated nuclear translocation of neutrophil elastase (NE), histone citrullination and NETosis. In a C. albicans peritonitis model we observed Ki67+Ly6G+ NETotic cells in the peritoneal exudate and mesenteric tissues within 3 h of infection. Treatment with PAD4 inhibitor GSK484 or dectin-2 deficiency reduced % Ki67+Ly6G+ cells and the intensity of Ki67 in peritoneal neutrophils. Employing DNA digestion enzyme micrococcal nuclease, GSK484 as well as dectin-2-deficient mice, we further showed that dectin-2-mediated PAD4-dependent NET formation in vivo restrained the spread of C. albicans from the peritoneal cavity to kidney. Taken together, this study reveals that unopsonized C. albicans evokes NADPH oxidase-independent NETosis through dectin-2 and its downstream signaling pathway and dectin-2-mediated NET helps restrain fungal dissemination.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Armadilhas Extracelulares/imunologia , Rim/imunologia , Lectinas Tipo C/metabolismo , NADPH Oxidases/metabolismo , Peritônio/imunologia , Animais , Candidíase/metabolismo , Candidíase/microbiologia , Rim/metabolismo , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , Peritônio/metabolismo , Fagocitose , Espécies Reativas de Oxigênio , Transdução de Sinais
8.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830077

RESUMO

The CHYR (CHY ZINC-FINGER AND RING FINGER PROTEIN) proteins have been functionally characterized in iron regulation and stress response in Arabidopsis, rice and Populus. However, their roles in soybean have not yet been systematically investigated. Here, in this study, 16 GmCHYR genes with conserved Zinc_ribbon, CHY zinc finger and Ring finger domains were obtained and divided into three groups. Moreover, additional 2-3 hemerythrin domains could be found in the N terminus of Group III. Phylogenetic and homology analysis of CHYRs in green plants indicated that three groups might originate from different ancestors. Expectedly, GmCHYR genes shared similar conserved domains/motifs distribution within the same group. Gene expression analysis uncovered their special expression patterns in different soybean tissues/organs and under various abiotic stresses. Group I and II members were mainly involved in salt and alkaline stresses. The expression of Group III members was induced/repressed by dehydration, salt and alkaline stresses, indicating their diverse roles in response to abiotic stress. In conclusion, our work will benefit for further revealing the biological roles of GmCHYRs.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glycine max , Família Multigênica , Proteínas de Soja , Ubiquitina-Proteína Ligases , Estudo de Associação Genômica Ampla , Proteínas de Soja/biossíntese , Proteínas de Soja/genética , Glycine max/enzimologia , Glycine max/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
9.
BMC Plant Biol ; 19(1): 25, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642256

RESUMO

Following publication of the original article [1], the author reported that their given name was misspelled.

11.
Plant Cell Environ ; 42(1): 145-157, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664126

RESUMO

The plant sucrose nonfermenting kinase 1 (SnRK1) kinases play the central roles in the processes of energy balance, hormone perception, stress resistance, metabolism, growth, and development. However, the functions of these kinases are still elusive. In this study, we used GsSnRK1 of wild soybean as bait to perform library-scale screens by the means of yeast two-hybrid to identify its interacting proteins. The putative interactions were verified by yeast retransformation and ß-galactosidase assays, and the selected interactions were further confirmed in planta by bimolecular fluorescence complementation and biochemical Co-IP assays. Protein phosphorylation analyses were carried out by phos-tag assay and anti-phospho-(Ser/Thr) substrate antibodies. Finally, we obtained 24 GsSnRK1 interactors and several putative substrates that can be categorized into SnRK1 regulatory ß subunit, protein modification, biotic and abiotic stress-related, hormone perception and signalling, gene expression regulation, water and nitrogen transport, metabolism, and unknown proteins. Intriguingly, we first discovered that GsSnRK1 interacted with and phosphorylated the components of soybean nodulation and symbiotic nitrogen fixation. The interactions and potential functions of GsSnRK1 and its associated proteins were extensively discussed and analysed. This work provides plausible clues to elucidate the novel functions of SnRK1 in response to variable environmental, metabolic, and physiological requirements.


Assuntos
Glycine max/enzimologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Imunoprecipitação , Fosforilação , Glycine max/metabolismo , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
12.
BMC Plant Biol ; 18(1): 234, 2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30316294

RESUMO

BACKGROUND: Even though bicarbonate alkaline stress is a serious threat to crop growth and yields, it attracts much fewer researches than high salinity stress. The basic leucine zipper (bZIP) transcription factors have been well demonstrated to function in diverse abiotic stresses; however, their biological role in alkaline tolerance still remains elusive. In this study, we functionally characterized a bZIP gene from Glycine soja GsbZIP67 in bicarbonate alkaline stress responses. RESULTS: GsbZIP67 was initially identified as a putative bicarbonate responsive gene, on the basis of previous RNA-seq data of 50 mM NaHCO3-treated Glycine soja roots. GsbZIP67 protein possessed a conserved bZIP domain, and belonged to the group S2 bZIP, which is yet less well-studied. Our studies showed that GsbZIP67 targeted to nucleus in Arabidopsis protoplasts, and displayed transcriptional activation activity in yeast cells. The quantitative real-time PCR analyses unraveled the bicarbonate stress responsive expression and tissue specific expression of GsbZIP67 in wild soybean. Further phenotypic analysis illustrated that GsbZIP67 overexpression in alfalfa promoted plant growth under bicarbonate alkaline stress, as evidenced by longer roots and shoots. Furthermore, GsbZIP67 overexpression also modified the physiological indices of transgenic alfalfa under bicarbonate alkaline stress. In addition, the expression levels of several stress responsive genes were also augmented by GsbZIP67 overexpression. CONCLUSIONS: Collectively, in this study, we demonstrated that GsbZIP67 acted as a positive regulator of plant tolerance to bicarbonate alkaline stress. These results provide direct genetic evidence of group S2 bZIPs in bicarbonate alkaline stress, and will facilitate further studies concerning the cis-elements and/or downstream genes targeted by GsbZIP67 in stress responses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Bicarbonatos/toxicidade , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Medicago sativa/fisiologia , Álcalis/toxicidade , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Núcleo Celular/metabolismo , Genes Reporter , Medicago sativa/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Transporte Proteico , Alinhamento de Sequência , Estresse Fisiológico
13.
Opt Express ; 26(10): A433-A449, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801264

RESUMO

An inexpensive, compact instrument for sensitive measurement of nocturnal nitrogen oxides NO3 and N2O5 in ambient air at high time resolution has been described. The instrument measures NO3 and N2O5 which is converted into the NO3 radical through thermal decomposition by optical extinction using a diode laser at 662.08 nm in two separate detection channels. The minimum detection limits (1σ) for the NO3 radical and N2O5 are estimated to be 2.3 pptv and 3.1 pptv in an average time of 2.5 s, with the accessible effective absorption path length generally exceeding 30 km, which is sufficient for quantifying NO3 radical and N2O5 concentrations under moderately polluted conditions. The total uncertainties of the NO3 and N2O5 measurements are 8% and 15% respectively, which are mainly dominated by the uncertainty of NO3 across section calculated for 353 K in this system. In addition, the dependence of the instrument's sensitivity and accuracy on a variety of conditions was presented in winter of 2016 and in summer of 2017 during two China-UK joint campaigns. Distinct N2O5 vertical profiles were observed at night in winter. The equilibrium among observed NO2, NO3 and N2O5 based on the equilibrium constants during summer time also provides confirmation of the measurement accuracy of the instrument.

14.
Plant Cell ; 27(10): 2829-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26486445

RESUMO

As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport.


Assuntos
Citoesqueleto de Actina/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oryza/genética , Actinas/metabolismo , Transporte Biológico , Citoesqueleto/metabolismo , Genes Reporter , Gravitropismo , Proteínas dos Microfilamentos/genética , Mutação , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/ultraestrutura
15.
PLoS Biol ; 13(10): e1002277, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26469762

RESUMO

Although glucose uniquely stimulates proinsulin biosynthesis in ß cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α) to initiate X-box-binding protein 1 (Xbp1) mRNA splicing in adult primary ß cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective ß cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, ß cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in ß cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with ß cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the ß cell for increased proinsulin synthesis and to limit oxidative stress that leads to ß cell failure.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Animais , Células Cultivadas , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Endorribonucleases/genética , Feminino , Humanos , Hiperglicemia/sangue , Hiperglicemia/patologia , Secreção de Insulina , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/ultraestrutura , Masculino , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Doadores de Tecidos , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box , Adulto Jovem
16.
Physiol Plant ; 164(3): 268-278, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29578245

RESUMO

Ubiquitin is a highly conserved protein with multiple essential regulatory functions through the ubiquitin-proteasome system. Even though its functions in the ubiquitin-mediated protein degradation pathway are very well characterized, the function of ubiquitin genes in the regulation of the alkaline stress response is not fully established. In this study, we identified 12 potential UBQ genes in the Glycine soja genome, and analyzed their evolutionary relationship, conserved domains and promoter cis-elements. We also explored the expression profiles of G. soja UBQ genes under alkaline stress, based on the transcriptome sequencing. We found that the expression of GsUBQ10 was significantly induced by alkaline stress, and the function of GsUBQ10 was characterized by overexpression in transgenic alfalfa (Medicago sativa). Our results suggested that GsUBQ10 transgenic lines significantly improved the alkaline tolerance in alfalfa. The GsUBQ10 transgenic lines showed lower relative membrane permeability, lower malon dialdehyde content and higher catalase activity than in the wild-type plants. This indicates that GsUBQ10 is involved in regulating the reactive oxygen species accumulation under alkaline stress. Taken together, we identified an ubiquitin gene GsUBQ10 from G. soja, which plays a positive role in responses to alkaline stress in alfalfa.


Assuntos
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ubiquitina/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago sativa/genética , Medicago sativa/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Glycine max/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
17.
PLoS Pathog ; 11(7): e1004985, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132276

RESUMO

Collaboration between heterogeneous pattern recognition receptors (PRRs) leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3) and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA), genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.


Assuntos
Histoplasmose/imunologia , Lectinas Tipo C/imunologia , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Microdomínios da Membrana/imunologia , Transdução de Sinais/imunologia , Animais , Western Blotting , Citocinas/biossíntese , Citocinas/imunologia , Imunofluorescência , Histoplasma , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , MAP Quinase Quinase 4/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas Tirosina Quinases/imunologia , RNA Interferente Pequeno , Receptor Cross-Talk/imunologia , Quinase Syk , Fator de Transcrição AP-1/imunologia , Transfecção
18.
J Immunol ; 190(7): 3427-37, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455499

RESUMO

Galectin-3 (gal3) is known for its immunoregulatory functions in infectious, autoimmune, and inflammatory diseases. However, little is known about its regulatory role in the host's IL-17A response to infection. Using a mouse model of histoplasmosis in which both Th1 and Th17 responses contribute to fungal clearance, we investigated how gal3 regulates IL-17A responses. Our study showed that Histoplasma infection induced gal3(-/-) dendritic cells to produce significantly higher levels of IL-23, TGF-ß1, and IL-1ß than did gal3(+/+) cells. Infected by the same inoculum of Histoplasma, gal3(-/-) mice had lower fungal burden and produced higher levels of IL-23/IL-17-axis cytokines and lower levels of IL-12 and IFN-γ. Additionally, there was an increase in Th17 cells and a reduction in Th1 cells in infected gal3(-/-) mice. In vitro Th1/Th17-skewing experiments excluded the intrinsic effect of gal3 on Th cell differentiation. Although neutrophils from both gal3(+/+) and gal3(-/-) mice produced IL-17A upon IL-23 stimulation, their contribution to IL-17A production was greater in gal3(-/-) mice than in gal3(+/+) mice. Compared with gal3(+/+) dendritic cells, adoptive transfer of gal3(-/-) dendritic cells resulted in production of significantly higher levels of IL-17-axis cytokines and reduced fungal burden. It appears that reduced fungal burden and preferential IL-17A response in gal3(-/-) mice by both Th17 cells and neutrophils were the result of preferential production of IL-23/IL-17-axis cytokines by dendritic cells. Our study showed that gal3 negatively regulates IL-17A responses through inhibition of IL-23/IL-17-axis cytokine production by dendritic cells.


Assuntos
Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Galectina 3/metabolismo , Histoplasma/imunologia , Histoplasmose/imunologia , Histoplasmose/metabolismo , Animais , Diferenciação Celular/imunologia , Galectina 3/genética , Histoplasmose/genética , Interações Hospedeiro-Patógeno/imunologia , Interleucina-17/biossíntese , Interleucina-17/farmacologia , Interleucina-23/biossíntese , Interleucina-23/farmacologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células Th17/citologia , Células Th17/imunologia
19.
Am J Pathol ; 183(4): 1209-1222, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23916470

RESUMO

Galectin-3 is a ß-galactoside-binding animal lectin with diverse functions, including regulation of T helper (Th) 1 and Th2 responses. Current data indicate that galectin-3 expressed in dendritic cells (DCs) may be contributory. Th17 cells have emerged as critical inducers of tissue inflammation in autoimmune disease and important mediators of host defense against fungal pathogens, although little is known about galectin-3 involvement in Th17 development. We investigated the role of galectin-3 in the induction of Th17 immunity in galectin-3-deficient (gal3(-/-)) and gal3(+/+) mouse bone marrow-derived DCs. We demonstrate that intracellular galectin-3 negatively regulates Th17 polarization in response to the dectin-1 agonist curdlan (a ß-glucan present on the cell wall of fungal species) and lipopolysaccharide, agents that prime DCs for Th17 differentiation. On activation of dectin-1, gal3(-/-) DCs secreted higher levels of the Th17-axis cytokine IL-23 compared with gal3(+/+) DCs and contained higher levels of activated c-Rel, an NF-κB subunit that promotes IL-23 expression. Levels of active Raf-1, a kinase that participates in downstream inhibition of c-Rel binding to the IL23A promoter, were impaired in gal3(-/-) DCs. Modulation of Th17 by galectin-3 in DCs also occurred in vivo because adoptive transfer of gal3(-/-) DCs exposed to Candida albicans conferred higher Th17 responses and protection against fungal infection. We conclude that galectin-3 suppresses Th17 responses by regulating DC cytokine production.


Assuntos
Citocinas/metabolismo , Células Dendríticas/metabolismo , Galectina 3/metabolismo , Células Th17/imunologia , Transferência Adotiva , Animais , Candida albicans/imunologia , Candida albicans/fisiologia , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/patologia , Polaridade Celular/efeitos dos fármacos , Galinhas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/enzimologia , Células Dendríticas/microbiologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Galectina 3/deficiência , Imunidade/efeitos dos fármacos , Interleucina-23/biossíntese , Lectinas Tipo C/agonistas , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th17/efeitos dos fármacos , beta-Glucanas/farmacologia
20.
Mol Genet Genomic Med ; 10(6): e1943, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388601

RESUMO

BACKGROUND: Mitochondrial disease (MD) is genetically a heterogeneous group of disorders with impairment in respiratory chain complexes or pathways associated with the mitochondrial function. Nowadays, it is still a challenge for the genetic screening of MD due to heteroplasmy of mitochondrial genome and the complex model of inheritance. This study was designed to investigate the feasibility of whole exome sequencing (WES)-based testing as an alternative option for the diagnosis of MD. METHODS: A Chinese Han cohort of 48 patients with suspect MD features was tested using nanoWES, which was a self-designed WES technique that covered the complete mtDNA genome and 21,019 nuclear genes. Fourteen patients were identified with a single genetic variant and three with single deletion in mtDNA. RESULTS: The heteroplasmy levels of variants in mitochondrial genome range from 11% to 100%. NanoWES failed to identify multiple deletions in mtDNA compared with long range PCR and massively parallel sequencing (LR-PCR/MPS). However, our testing showed obvious advantages in identifying variations in nuclear DNA. Based on nanoWES, we identified two patients with nuclear DNA variation. One of them showed Xp22.33-q28 duplication, which indicated a possibility of Klinefelter syndrome. CONCLUSION: NanoWES yielded a diagnostic rate of 35.4% for MD. With the rapid advances of next generation sequencing technique and decrease in cost, we recommend the usage of nanoWES as a first-line method in clinical diagnosis.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA