Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(25): 256502, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181355

RESUMO

We study quantum phase transitions in Bose-Fermi mixtures driven by interspecies interaction in the quantum Hall regime. In the absence of such an interaction, the bosons and fermions form their respective fractional quantum Hall (FQH) states at certain filling factors. A symmetry-protected topological (SPT) state is identified as the ground state for strong interspecies interaction. The phase transitions between them are proposed to be described by Chern-Simons-Higgs field theories. For a simple microscopic Hamiltonian, we present numerical evidence for the existence of the SPT state and a continuous transition to the FQH state. It is also found that the entanglement entropy between the bosons and fermions exhibits scaling behavior in the vicinity of this transition.

2.
Nat Commun ; 15(1): 6236, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043699

RESUMO

Fractional quantum Hall (FQH) states are exotic quantum many-body phases whose elementary charged excitations are anyons obeying fractional braiding statistics. While most FQH states are believed to have Abelian anyons, the Moore-Read type states with even denominators - appearing at half filling of a Landau level (LL) - are predicted to possess non-Abelian excitations with appealing potential in topological quantum computation. These states, however, depend sensitively on the orbital contents of the single-particle LL wavefunctions and the LL mixing. Here we report magnetotransport measurements on Bernal-stacked trilayer graphene, whose multiband structure facilitates interlaced LL mixing, which can be controlled by external magnetic and displacement fields. We observe robust FQH states including even-denominator ones at filling factors ν = - 9/2, - 3/2, 3/2 and 9/2. In addition, we fine-tune the LL mixing and crossings to drive quantum phase transitions of these half-filling states and neighbouring odd-denominator ones, exhibiting related emerging and waning behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA